作者查詢 / NTUmaki
作者 NTUmaki 在 PTT [ Math ] 看板的留言(推文), 共75則
限定看板:Math
看板排序:
全部C_Chat362SENIORHIGH289NTU182Gossiping176Grad-ProbAsk154graduate104Physics91Soft_Job79Math75LoveLive_Sip57Japan_Travel48NTUcourse40Tech_Job40Chemistry21Minecraft17movie17Coffee10EAseries9LoL8BanG_Dream7sex7C_and_CPP6PC_Shopping6Boy-Girl5WomenTalk5joke4BTS3MacShop3RockMetal3CareerPlan2Concert2DIABLO2Lottery2PhD2TaiwanDrama2Tobacco2AC_In1Food1hotspring1japanavgirls1NTU-Exam1SENIOR_BM1Shana1SYSOP1TurtleSoup1tutor1<< 收起看板(46)
3F→: 我不太懂 for some 跟 for all 在這邊的區別,如果10/24 11:52
4F→: 是子空間的話應該 for all要對啊?Rn空間除了0以外10/24 11:52
5F→: 其他子空間應該都是有無限個向量才對吧?10/24 11:52
2F→: 我是怕有什麼特殊的情況沒考慮到@@10/17 15:36
11F→: 了解.. 因為我知道方陣的逆矩陣唯一這個定理 但是他10/17 17:31
12F→: 給的非方陣 才感覺這樣證會在某個地方出錯10/17 17:31
13F→: 也就是說我必須說明他是方陣 才能這樣導?10/17 17:32
31F→: 我好像有抓到感覺了,是不是應該這樣講,因為平常寫09/30 03:09
32F→: 向量其實都是用standard basis的座標(不會特別標註09/30 03:09
33F→: ),所以我會覺得有一個原始的向量應該長什麼樣子09/30 03:09
34F→: 實際上都是不同基底在換來換去所以我不能直接拿B去09/30 03:09
35F→: 乘座標 應該是要用變換座標的矩陣去乘才對?09/30 03:09
59F→: okok 所以其實原本就該用座標轉換去想 只是因為如果09/30 15:22
60F→: 有standard basis會讓我忽略掉 :基底*座標=向量 其09/30 15:22
61F→: 實也是兩個座標在轉換09/30 15:22
62F→: 因為一開始學座標化的時候是從standar basis去推的09/30 15:24
63F→: 所以一直會覺得有一個出發點09/30 15:24
72F→: 嗯嗯嗯我應該完全懂了,總之所有東西都是座標轉換09/30 18:05
73F→: ,矩陣表示法只是差在多一個線性映射09/30 18:05
20F→: 這樣說起來好像我從頭到尾都理解錯...我先整理一下09/04 11:21
21F→: 我的問題 晚點回覆09/04 11:21
73F→: 頭好痛QQ 出現一些我沒學過的字(rational form、一09/04 13:54
74F→: 次式、...) 我把我學的脈絡整理一下..等等請你幫我09/04 13:54
75F→: 看看是不是對的09/04 13:54
81F→: https://hackmd.io/@brianw0924/SyX0DU14D09/04 14:50
82F→: 我整理大概如上面那樣~不知道看不看得到09/04 14:51
83F→: 接續一個疑問,最後變成說 空間一定可以拆成廣義eig09/04 15:06
84F→: enspace直和 是因為 在廣義eigenspace情況下 幾何重09/04 15:06
85F→: 數=代數重數 所以可以類似對角化(只是對角是block09/04 15:06
86F→: ) 應該沒錯吧09/04 15:06
124F→: 總之可以理解成 nilpotent 是 最後定理的其中一個ca09/04 19:41
125F→: se (最後出來的 jordan form 比較不用切那麼多塊)09/04 19:41
126F→: 這樣吧!? 有些核心定理沒證...我只想大致理解他09/04 19:41
127F→: 的概念09/04 19:41
155F→: 了解...其實發現最後算的時候也不知道在幹嘛 因為核09/05 12:36
156F→: 心定理沒證@@ 感謝回答09/05 12:36
16F→: 好的...感謝 我一直被實數複數搞混 有時候條件寫屬08/28 21:41
17F→: 於複數 我就開始想說 實數是不是也可套用...但有的08/28 21:41
18F→: 條件實數複數分開寫 我就又開始想 如果是實數是不是08/28 21:41
19F→: 要兩種都符合08/28 21:41
43F→: 好的 感謝! 我再自己整理一下08/28 22:33
9F→: 那請問這兩句話對不對:A屬於複矩陣,則正定一定her08/25 14:15
10F→: mitian ;A屬於實矩陣,則正定一定Symmetric08/25 14:15
22F→: 好神奇@@08/25 14:26
25F→: 我知道不用對稱的例子存在了 但我邏輯上不太懂為什08/25 14:31
26F→: 麼不用, A屬於複矩陣則A正定一定hermitian ;但是08/25 14:31
27F→: 當A屬於實矩陣的時候 他一定也屬於複矩陣,這樣A正08/25 14:31
28F→: 定一定hermitian ,此處hermitian 不就剛好是對稱嗎08/25 14:31
29F→: ?還是說講實矩陣的時候 不能提到hermitian08/25 14:31
34F→: 哦哦!所以一般會讓A跟x的定義域一致嗎08/25 14:34
37F→: 這邊一下定在複數 一下定在實數 好混亂==08/25 14:43
38F→: 總之如果A屬於實矩陣,然後我的正定是定義for all x08/25 14:49
39F→: 屬於‘複vector’那我就可以說 正定一定對稱?08/25 14:49
7F→: 哦哦哦 我懂了 unitary 一定normal 但反之不一定。08/25 00:10
8F→: 那我可以說if unitary then unitary diagonalizable08/25 00:10
9F→: 嗎08/25 00:10
11F→: 學算子這章好麻煩== 一堆性質要記..08/25 00:16
39F→: 我其實只是想問說 原本我想說 可對角化等價於V=每個08/24 01:46
40F→: eigenspace的直和 但這邊竟然沒成立 所以我想問題是08/24 01:46
41F→: 不是出在那個W ?08/24 01:46
42F→: 抱歉==你講的很多名詞術語我都沒聽過..整篇下來看不08/24 01:56
43F→: 太懂,我學的很淺 問題就主要在我以為那個直和等式08/24 01:56
44F→: 跟可對角化是等價的08/24 01:56
69F→: 完全懂了..我應該是把eigenspace搞錯 我以為W那樣取08/24 10:22
70F→: 是指所有的eigenspace的和空間..所以我以為對角的la08/24 10:22
71F→: mbda都是相異的(所以beta 任意取 因為都在同一個特08/24 10:22
72F→: 徵值對應的eigenspace 因此出來對角都是同一個特徵08/24 10:22
73F→: 值)08/24 10:22
74F→: 非常感謝用心解說 還舉例><08/24 10:22
14F推: 單純是你對det不熟吧 我覺得數學比較需要思考的題目07/30 02:11
15F→: 就是考你對公式/定義的熟練度去發想/產生靈感。而且07/30 02:11
16F→: 因為他是考題 不難找出他想暗示什麼 只是你熟不熟、07/30 02:11
17F→: 有沒有猜到他想幹嘛07/30 02:11