Re: [中學] 柯西不等式
※ 引述《semmy214 (黃小六)》之銘言:
: https://imgur.com/a/qVcLP
: 這題感覺是進階題
: 請瞭解的大大詳解~3Q
由柯西不等式知 (1^2 + z^2)[(x+y)^2 + 1^2] >=(x+y+z)^2
又由題意知 (x+y+z)^2 = (1+z^2)[ 1+(1+x^2)(1+y^2) ]
故 (1^2 + z^2)[(x+y)^2 + 1^2] >=(1+z^2)[ 1+(1+x^2)(1+y^2) ]
=> [(x+y)^2 + 1^2]>=[ 1+(1+x^2)(1+y^2) ]
=> x^2 + 2xy + y^2 + 1 >= 1 + 1 + x^2 + y^2 + (xy)^2
=> (xy-1)^2 <= 0 , 故 xy = 1 => y = 1/x
柯西等號成立時, 1/(x+y) = z/1 => z = 1/(x+y)= 1/[x+(1/x)] = x/(1+x^2)
故f(x)=1/x, g(x)=x/(1+x^2)_
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.239.25.199
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1512485420.A.5B4.html
推
12/06 08:19,
8年前
, 1F
12/06 08:19, 1F
→
12/06 08:20,
8年前
, 2F
12/06 08:20, 2F
→
12/06 08:21,
8年前
, 3F
12/06 08:21, 3F
→
12/06 09:03,
8年前
, 4F
12/06 09:03, 4F
→
12/06 09:12,
8年前
, 5F
12/06 09:12, 5F
→
12/06 09:56,
8年前
, 6F
12/06 09:56, 6F
討論串 (同標題文章)