Re: [線代] 矩陣 AB=I => BA = I 嗎
※ 引述《kyoiku (生死間有大恐怖)》之銘言:
: 反方陣的定義
: AB = BA = I,則 B 稱為 A 的反矩陣
: 如果只有 AB = I 那是否必然 BA = I 呢
: 如何證明?
Assume AB=I.
To prove BA=I, it is suffice to show that B is a linear combination of
I,A,A^2,A^3,...A^k,...
Proof:
Consider the infinitely long sequence of matrices I,A,A^2,A^3,....
They are all in a vector space of dim n^2.
Hence they are linearly dependant:
so there are some coefficients c_0, c_1,c_2,...,c_s such that
c_0*I+c_1*A+c_2*A^2+..+c_s*A^s = 0.
By multiplying B from the left, we may assume c_0 is non-zero, says c_0=-1.
Thus, we have I=c_1*A+c_2*A^2+...+c_s*A^s.
Mutiply B from the left again, we get B=c_1*I+c_2*A+....+c_s*A^{s-1}.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.165.196.85
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1425147783.A.366.html
→
03/01 13:09, , 1F
03/01 13:09, 1F
→
03/01 13:10, , 2F
03/01 13:10, 2F
→
03/01 13:10, , 3F
03/01 13:10, 3F
→
03/01 13:11, , 4F
03/01 13:11, 4F
→
03/01 13:21, , 5F
03/01 13:21, 5F
推
03/01 20:55, , 6F
03/01 20:55, 6F
→
03/01 20:56, , 7F
03/01 20:56, 7F
→
03/01 20:57, , 8F
03/01 20:57, 8F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 11 之 12 篇):