Re: [微積] 分部積分

看板Math作者 (但願真的能夠實現願望)時間12年前 (2013/05/15 20:57), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串12/23 (看更多)
※ 引述《rebe212296 (綠豆冰)》之銘言: : 求∫t^4*e^tdt : 請問怎麼解 謝謝! t 令 u = t^4 , dv = e dt 則 du = (4)(t^3) dt , v = e^t ∫(t^4)(e^t) dt = (t^4)(e^t) - (4)(∫(t^3)(e^t) dt) = (t^4)(e^t) - (4)((t^3)(e^t) - ∫(e^t)((3)(t^2)) dt) (令 u = t^3 , dv = e^t dt , 則 du = (3)(t^2) dt , v = e^t) = (t^4)(e^t) - (4)(t^3)(e^t) + 12∫(t^2)(e^t) dt = (t^4)(e^t) - (4)(t^3)(e^t) + (12)((t^2)(e^t) - ∫(e^t)(2t) dt) (令 u = t^2 , dv = e^t dt , 則 du = 2t dt , v = e^t) = (t^4)(e^t) - (4)(t^3)(e^t) + (12)(t^2)(e^t) - 24∫(t)(e^t) dt) = (t^4)(e^t)-(4)(t^3)(e^t)+(12)(t^2)(e^t)-(24)((t)(e^t) - ∫e^t dt) (令 u = t , dv = e^t dt , 則 du = dt , v = e^t) = (t^4)(e^t)-(4)(t^3)(e^t)+(12)(t^2)(e^t)-(24)(t)(e^t) + (24)(e^t) + c -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.167.119.32
文章代碼(AID): #1HauPImM (Math)
討論串 (同標題文章)
文章代碼(AID): #1HauPImM (Math)