Re: [微積] 一題證明

看板Math作者 (八字-風水-姓名學)時間13年前 (2013/01/29 13:16), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串8/14 (看更多)
※ 引述《KOREALee (韓國最高)》之銘言: : Prove that f is continuous at a if and only if : lim f(a+h) = f(a) : h→0 Suppose that f is continuous at x = a. Given ε> 0, there is δ>0 such that |f(a+h)-f(a)|<ε whenever |(a+h)-a|<δ. For the reverse case, let x = a be a point in the domain of f. Assume that lim(h->0) f(a+h) = f(a), then given ε>0 there is δ= h >0 such that |f(x)-f(a)|<ε whenever |x-a|<δ and x in the domain of f. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.245.192 ※ 編輯: armopen 來自: 111.251.245.192 (01/29 17:08)
文章代碼(AID): #1H1ridkk (Math)
討論串 (同標題文章)
文章代碼(AID): #1H1ridkk (Math)