作者查詢 / kimkimkimkim

總覽項目: 發文 | 留言 | 暱稱
作者 kimkimkimkim 在 PTT [ Grad-ProbAsk ] 看板的留言(推文), 共108則
限定看板:Grad-ProbAsk
看板排序:
全部NTUST-ECE461basketballTW438Beauty350Tennis178DPP150Olympics_ISG140NTUST_Talk136Hate130SuperStarAve130WarCraft114Grad-ProbAsk108CMWang98Stock64Mix_Match61Gossiping55MRT54Boy-Girl47EatToDie46Bank_Service44PushDoll43Railway39graduate35Food34sex30Examination29Baseball28Salary25street_style25WorldCup24CFP22CVS22Electronics21GraduateCram17NY-Yankees17Gov_owned16Kaohsiung16Lifeismoney15CareerPlan14ChungLi14NBA14nCoV201914TY_Research14BaseballNEWS13biker13Federer13ID_Multi13L_SecretGard13Lottery11fastfood10HatePicket10Militarylife10TaiwanDrama10GuessX39NUK_EE100A9KS_PMAC8Tainan8car7HSNU_10957joke7NCCU_BEAUTY7Wrestle7feminine_sex6MMA6Pilots6PureYouth6Bus5ck59th3065cksh85th3105Golden-Award5HLHS_10thU5Jeremy_Lin5KS96-3055MobilePay5NTUT_IPET4955Office5Anchors4ck56th3154ck_17_3014cksh85th3074CPSHS4GetMarry4GIEE_BASKET4HCHS603094HotBloodYuan4KS95-3024KS96-3024KS96-3144LHU4LTSH-963114MATLAB4MLB4movie4NSYSU_EE95-14NTUBIME-1004NTUBIME-1024NTUST-ENG4NUU_ID4PuliDC3154TFSHS64th3184Trans-nctu4A-Rod3AllTogether3creditcard3CSonline3Doctor-Info3Elephants3FJU-EE-VLSI3GreenParty3HBL3KS98-3023Little-Games3Mancare3NCHU-FS993NDHU-His1003NTHU-EE-CAPT3NTUST_STUDY3NYUST98_FING3PttHistory3Supermission3TCIVS3Violation3Actuary2BROADWAY2CHSH-3192cksh83rd3142FCU_EE97A2FJU-ACCR942FSHS-95-3082FubonBraves2Fund2GIEE_982HCHS593052Hip-Hop2HSNU_11192HSNU_8202hypermall2KMSH_MS982KS97-3182KS98-3122media-chaos2MKSH-95-62MobileComm2mobilesales2NBAEasyChat2NCCU09_LawA2NCKU_EARTH982NCU97ME-B2NCU_MATH862NDHU_OECLab2NHCUE_Rover2NKNU_Phy1002NKUTEE2NTPU-CSIE952NTUHorti962PublicServan2Road2RSSH96_3062SpongeBob2TaiwanBank2TaiwanBeer2TaiwanDa2TamShui2THU-His892TKU_Talk2twin2VL2Windows2Anti-Cancer1AOE1Asiantennis1ask1Ayu1Badminton1Baki1BASKET-RULES1BeautyBody1BigShiLin1Broad_Band1Browsers1Canned1CCF1CCSH_86_3121CCU_EE961CCU_Telcom001CGSH87th_3151CHChen1ChiLing1ck50th3231ck55th3051ck58th3041ck59th3271cksh79th011cksh80th3091cksh80th3141cksh82nd3211cksh83rd3091cksh83rd3161cksh83rd3171cksh84th3021cksh84th3121cksh84th3211cksh85th3111cksh85th3171cksh85th3201CLHu1CMU_BST011ComGame-Plan1CPU_7711CPU_PA7511CSMU-D971CSMU-HSA961CSMU-HSA971CSMU-MIS921CTSH923011CTSH923061CTSH963011CYCU_EE_07A1CYUT1DaCin1DIABLO1dlsh-7th-3031Edison1electronic1Emergency1Employee1FatMonkeys1FHB-TEAM1FJU-ACC93b1FJU-CH-2007B1FJU-EE-2006B1FJU-Family1FJU-Stat95A1FJU-STAT95B1FJU_Guitar1FJU_JCS111FJU_NIGHT1FLAT_CLUB1FSHS-94-3161GatoShoji1Gintama1hardware1HCHS543071HCSHch13_3111Hewitt1HK-movie1HOT_Game1HOTPINK1HPSH-93-3121HsinYi1HSNU_10081HSNU_10371HSNU_10551HSNU_10661HSNU_10981HSNU_11081HSNU_11091HSNU_11151HSNU_11241HSNU_11261HSNU_11701HSNU_9751HSNU_9891IA1IAM_Aero0071Instant_Food1isLandTravel1japanavgirls1JP_Entertain1Kids_Sucker1KS91-3191KS94-3111KS94-3131KS94-3201KS95-3161KS96-3031KS97-3201KTPS41th6101Law-Fala1Lei-Tien1Mavericks1MCU_Talk1MCUBA891MiamiHeat1MIT1MOD1NAOE-861NCCU06_JAPAN1NCCU07_Arab1NCCU08_SW1NCCU09_BA1NCCUPA_SPORT1NCHU-FS1001NCHU-FS981NCHU_AMpower1NCHU_BIME991NCHUS1NCKU-HIS991NCNUEM1NCUT1NCYU_BE_96b1NDHU-Ch1021NDHU-His1021NDHU-phy1011NDHU_FIN991NDHU_MSE931NDMC-P921NDMC-PH231NDMC-PH271Neihu1NHU_CSIE1NIU-ECE92b1NLHS-3th-3061NLHS-5th-3121NLHS-Chat1NSYSU_ICM001NTCPE_SM_951NTHU_KAVALAN1NTHU_LING_981NTNU-SLM951NTOUEE981NTPU-CSIE961NTPU-ECONM961NTPU-STAT941NTSU_LIM971NTU1NTU-K61NTU_Beauty1NTUBSE-B-991NTUE-EPC-961NTUE-ME981NTUE101SE1NTUMEB961NTUmedvolybl1NTUMSE-961NTUST-ARCH1NTUST-DC-B961NTUST-EE-A971NTUST-EE-B901NTUST-ET-A961NTUST-MBA961NTUST_ME1NTUSTRockLab1NUK_AC981Nurse1Odoko-juku1OIRC1Option1pal1PC_Shopping1PCSH91_3051PeopleSeries1PHI_Basketba1Physics1Property_M1prose1Ptt-Charity1PttBug1PttLifeLaw1Raptors1RMI_Soccer1RSSH94_3021Salesperson1SCU_Japan96A1SCU_Talk1share1ShowOff1SHU-CMBA961SNSD1Softball1specialman1SSSH-16th-Fk1Stephen1Sub_CS1SuperTaste1tax1TBBT1tcfsh69th3041TCFSHvolley1Team-NTU1Tech_Job1TFSHS62th3161TFSHS64th3091TFSHS65th3071TFSHS65th3161TFSHS66th3071TigerBlue1TKU_info1TMU9791TNFSH98th1Tobacco1TPC_Police1TTU-talk1TuTsau1Uni-Service1USC1Vocaloid1Warfare1watch1Williams1WULING-B961WuLing46-3171WuLing50-3061YP94-3101YP95-3121YP96-3141YZU_CN99A1<< 收起看板(406)
Re: [理工] [工數] 矩陣代數運算
[ Grad-ProbAsk ]3 留言, 推噓總分: +1
作者: a81288653 - 發表於 2011/08/02 16:06(14年前)
1Fkimkimkimkim:應該沒錯 但我之前是把U是以歸一正交向量組成08/03 00:12
2Fkimkimkimkim:U^(-1) = U^(T) 這樣不知道有無較快08/03 00:13
Re: [理工] [工數] 二階變係數ODE
[ Grad-ProbAsk ]19 留言, 推噓總分: +5
作者: mp8113f - 發表於 2011/07/30 13:08(14年前)
2Fkimkimkimkim:拆成兩項很難看出來XD07/30 21:57
[理工] [工數] 矩陣代數運算
[ Grad-ProbAsk ]22 留言, 推噓總分: +12
作者: jerrysimon - 發表於 2011/07/30 08:45(14年前)
1Fkimkimkimkim:是不是不只一組答案07/30 16:59
2Fkimkimkimkim:請問有答案嗎?07/30 17:01
4Fkimkimkimkim:對角化出來答案很醜 有a和b的函數07/30 17:37
20Fkimkimkimkim:用a、b表示是唯一 但會開4次方根 寫1/4次方就好07/31 01:27
21Fkimkimkimkim:不過還是很煩07/31 01:27
[理工] [離散] 求多項式係數
[ Grad-ProbAsk ]18 留言, 推噓總分: +2
作者: a613204 - 發表於 2011/07/30 03:20(14年前)
9Fkimkimkimkim:部分分式後 三項都去求係數 應是要用到排列組合C去算07/30 16:23
10Fkimkimkimkim:係數吧 是這樣嗎?07/30 16:24
12Fkimkimkimkim:奇怪我怎算1/207/30 17:48
13Fkimkimkimkim:你算出來的係數 可以用無窮級數展開吧07/30 17:50
14Fkimkimkimkim:抱歉 我也算是1欸07/30 17:53
[理工] [線代] 對角化的問題
[ Grad-ProbAsk ]6 留言, 推噓總分: +2
作者: NBASTAR5566 - 發表於 2011/07/27 11:28(14年前)
3Fkimkimkimkim:隨便擺沒差但順序要跟特徵向量一樣就好07/27 20:44
4Fkimkimkimkim:第二個 特徵向量加負號沒差 負號可放入或從未定係07/27 20:50
5Fkimkimkimkim:數07/27 20:50
6Fkimkimkimkim: 提出07/27 20:50
[理工] 基本微積分
[ Grad-ProbAsk ]14 留言, 推噓總分: +3
作者: KoBuKoLa - 發表於 2011/07/23 15:22(14年前)
1Fkimkimkimkim:我想你應該翻書07/24 00:59
2Fkimkimkimkim:第二張圖積分就是第三張圖= =07/24 01:00
7Fkimkimkimkim:1/(x^2*y^2)dxy = (x^2*y^2)^(-1)dxy =(xy)^(-2)dxy07/24 01:10
8Fkimkimkimkim:= -(xy)^(-1) = -1/xy 右邊同理 外家積分常數07/24 01:11
9Fkimkimkimkim:這樣應該看的懂吧07/24 01:12
Re: [理工] [工數]初值定理
[ Grad-ProbAsk ]8 留言, 推噓總分: +4
作者: ntust661 - 發表於 2011/07/22 12:49(14年前)
4Fkimkimkimkim:微積分 羅畢達定理07/22 21:38
[理工] [工數]-積分
[ Grad-ProbAsk ]12 留言, 推噓總分: +6
作者: aboyfun - 發表於 2011/07/21 00:14(14年前)
5Fkimkimkimkim:∫lnx dx = xlnx - ∫x dlnx =xlnx - ∫x * 1/x dx07/21 08:40
6Fkimkimkimkim: = xlnx - ∫1dx = xlnx - ∫1dx = xlnx-x+c07/21 08:42
7Fkimkimkimkim:答案是這樣嗎07/21 08:42
9Fkimkimkimkim:其實是我是用分部積分公式 ∫u dv = u*v-∫v du07/21 12:46
[理工][工數]一階問題
[ Grad-ProbAsk ]9 留言, 推噓總分: +4
作者: joy114 - 發表於 2011/07/17 17:37(14年前)
1Fkimkimkimkim:第一題 一階線性方程式07/18 01:59
2Fkimkimkimkim:第二題 dy = 2dx + √(y-2x+3) dx07/18 02:01
3Fkimkimkimkim:dy - 2dx = √(y-2x+3) dx07/18 02:02
4Fkimkimkimkim:d(y-2x) = √(y-2x+3) dx07/18 02:02
5Fkimkimkimkim:du = √(u+3) dx , u = y-2x07/18 02:03
8Fkimkimkimkim:第一題沒要分開阿 乘上積分因子07/18 16:43
[理工] [複變]喻超凡課本上的問題 (附上圖檔)
[ Grad-ProbAsk ]17 留言, 推噓總分: +7
作者: despicable - 發表於 2011/07/16 03:33(14年前)
5Fkimkimkimkim:帶一組數字下去驗證即可07/16 13:30
6Fkimkimkimkim:分母應該除以兩次無誤07/16 13:31
14Fkimkimkimkim:.......07/16 23:08
15Fkimkimkimkim:分子是r ~ r-n+1項 並非r ~ 1 項 1~n 項與分母n!已07/16 23:10
16Fkimkimkimkim:約分07/16 23:10