Re: [中學] 今日鳳中教甄

看板Math作者 (Ian)時間10年前 (2015/05/03 21:34), 10年前編輯推噓1(100)
留言1則, 1人參與, 最新討論串7/7 (看更多)
※ 引述《shingai (吸收正能量)》之銘言: : #2 設a, b, c 為x^3-x^2+2x-3=0 之三根 : 求 : a^3/[(a^2-b^2)(a^2-c^2)]+ b^3/[(b^2-a^2)(b^2-c^2)]+ c^3/[(c^2-b^2)(c^2-a^2)] : 之值 Let S=a^3/[(a^2-b^2)(a^2-c^2)]+ b^3/[(b^2-a^2)(b^2-c^2)]+ c^3/[(c^2-b^2)(c^2-a^2)] a^3(b+c) b^3(c+a) c^3(a+b) Then S*(a+b)(b+c)(c+a)= ----------- + ---------- + -------- (a-b)(a-c) (b-c)(b-a) (c-a)(c-b) a^3(x-b)(x-c) b^3(x-c)(x-z) c^3(x-a)(x-b) H(x):= ------------------- + ------------------- + --------------- (a-b)(a-c) (b-c)(b-a) (c-a)(c-b) Hence H(x)=x^3 for x=a,b,c. Since deg(H)<=2, we have H(x)=x^3 - (x-a)(x-b)(x-c). Note that the coefficient of x in H(x) is the same as -S*(a+b)(b+c)(c+a) Thus, S=(ab+bc+ca)/[(a+b)(b+c)(c+a)]=-2. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.45.201.100 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1430660045.A.643.html ※ 編輯: motivic (114.45.201.100), 05/03/2015 21:48:59

05/03 22:24, , 1F
了解! 感謝
05/03 22:24, 1F
文章代碼(AID): #1LHYFDP3 (Math)
討論串 (同標題文章)
文章代碼(AID): #1LHYFDP3 (Math)