Re: [微積] 一題極限

看板Math作者 (QQ)時間14年前 (2011/11/10 22:12), 編輯推噓1(101)
留言2則, 1人參與, 最新討論串11/37 (看更多)
※ 引述《c5ckk (蔡脯)》之銘言: : lim(x,y)->(0,0) sin(xy)/xy = 1 : lim(x,y,z)->(0,0,0) sin(xyz)/xyz = ? : 總覺得也是1 : 可是答案給的是0 : 請問要怎麼算?? 兩個都是1吧 Define f(x,y) = sin(xy)/(xy) , if x,y =/= 0 1 , if x=0 or y=0 Since lim sinx/x = 1 x→inf so for e > 0 , there exists 1 > d_e > 0 , (取d_e與1之min即可做到這件事) s.t. │sinx/x - 1│< e , if 0 <│x│< d_e ------------ (*) Then for e > 0 , take the same d_e as above if 0 < (x^2+y^2)^(1/2) < d_e then : Case1=> x=0 or y=0 → then f(x,y) = 1 , so │f(x,y) - 1│= 0 < e Case2=> x,y =/= 0 → Since 0 < (x^2+y^2)^(1/2) < d_e so 0 <│x│< d_e , 0 <│y│< d_e hence 0 <│xy│< d_e^2 < d_e (Since d_e < 1) so │f(x,y) - 1│ = │sin(xy)/(xy) - 1│ < e (from (*)) -------------------------- xyz亦是 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.243.156.43

11/10 22:18, , 1F
感謝!
11/10 22:18, 1F

11/10 22:18, , 2F
看來應該是答案有誤
11/10 22:18, 2F
文章代碼(AID): #1EkzlWuH (Math)
討論串 (同標題文章)
文章代碼(AID): #1EkzlWuH (Math)