Re: 微積分證明題

看板trans_math作者 (佐岸)時間17年前 (2008/10/19 16:40), 編輯推噓1(105)
留言6則, 2人參與, 最新討論串2/6 (看更多)
※ 引述《coffee1205 (佐岸)》之銘言: : Let f(x)=x/|x|.Prove that limitf(x) does not exist? : x->0 : Hint:Show that no number L qualifies as the limit because : there always some x such that |x| < delta,but |f(x)-L|大於等於1/2 : ,no matter how small delta is taken. : 這題我想很久,但是解不出來,有沒有哪位好心人士可以幫幫我,小弟感激不盡!!! 我解出來是這樣的,不知道對不對? For all eplison > 0, there exist delta > 0, such that |f(x)-L| < eplison if 0 < |x-0| < delta Assume the limit exist,take eplison=1/2 |f(x)-L|=|x/|x| - L| =1+|L| 大於等於 1 > 1/2 = eplison thus it is contridiction,so the limit does not exist. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.167.170.154

10/19 17:05, , 1F
只要你的過程沒有問題而且得到hint給定
10/19 17:05, 1F

10/19 17:05, , 2F
的結果那就對了
10/19 17:05, 2F

10/19 18:25, , 3F
不對!
10/19 18:25, 3F

10/19 18:26, , 4F
請證明: For any L, 存在 e>0, such that
10/19 18:26, 4F

10/19 18:27, , 5F
for any d>0, 存在 x 滿足 0<|x|<d 但
10/19 18:27, 5F

10/19 18:27, , 6F
|f(x)-L|>e.
10/19 18:27, 6F
文章代碼(AID): #18-l9zES (trans_math)
文章代碼(AID): #18-l9zES (trans_math)