Re: [微積] 幾題微積分

看板Math作者 (Tidus)時間7年前 (2018/11/29 21:07), 編輯推噓1(100)
留言1則, 1人參與, 7年前最新討論串22/22 (看更多)
※ 引述《ttPttPtt (ttPtt)》之銘言: : 想請問以下幾個形式的微積分如何解? C is constant of the integration : (1)∫√(a+bx^2)dx x = tanu√(a/b), du = (secu)*(secu)*√(a/b) cosu = √(a/b)/√[x*x + a/b] = 1/secu ∫√(a+bx^2)dx = [a/√b]*∫(secu)^3 du ∫(secu)^3 du = ∫secu*d(tanu) = secu*tanu - ∫secu*tanu*tanu*du ∫secu*tanu*tanu*du = ∫secu*(secu*secu-1)*du = ∫(secu)^3 du - ∫(secu) du so ∫(secu)^3 du = secu*tanu - ∫(secu)^3 du + ∫(secu) du -->∫(secu)^3 du = 0.5*(secu*tanu + ∫(secu) du) = 0.5*(secu*tanu + ln|secu + tanu|) [a/√b]*∫(secu)^3 du = 0.5*(a/√b)*[x√(x*x + a/b)/(a/b) + ln|ax/b + √(x*x + a/b)/(a/b)|] x√(a+bx^2) a*(√b)*ln|√(a+bx^2) + bx| = ----------- + --------------------------- + C 2 2 : (2)∫dx/(√(x*(a+b*x^2))) : (3)∫dx/(√(a*x^2+b*x+c)) a*x^2+b*x+c = a(x-b/2a)^2 + [c-(b/2a)^2] ^^^^^^^^^ + ^^^^^^^^^^^^ y^2 k y = tanu√(k/a), dy = du*(secu)*(secu)*√(k/a) cosu = [√(k/a)]/(y*y+k/a) ∫dx/(√(a*x^2+b*x+c)) = ∫dy/√(ay^2 + k) = ∫secudu = ln|secu + tanu| so turn into x, then get the answer : (4)∫√(a*x^2+b*x+c)dx simila as (1) : 感謝各位駐版版友 : ----- : Sent from JPTT on my HTC_X10u. -- !!!!!!!!!!!!!簽名檔破740000點擊率啦!!!!!!!!!!!!!!! Fw: [問卦] 電影:決勝21點的機率問題 https://goo.gl/2BpbB7 #1MfN3FgZ (joke)

07/22 16:41,
chx64的1/2悖論真的很經典呢
07/22 16:41
!!!!!!!!!!!!!!簽名檔破740000點擊率啦!!!!!!!!!!!!!! -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 27.247.158.2 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1543496868.A.2EC.html

11/29 23:02, 7年前 , 1F
謝謝您
11/29 23:02, 1F
文章代碼(AID): #1R_-IaBi (Math)
討論串 (同標題文章)
文章代碼(AID): #1R_-IaBi (Math)