Re: [中學] 指數方程式
※ 引述《revengeiori (大笨宗)》之銘言:
: 方程式 f(x)= 4^x + m* 2^x + 5 = 0
: 至少有一實根在 [1,2] 之間,求 m 的範圍?
: 麻煩各位先進了
如原文推文
題目等同y^2+my+5=0至少有一實根在[2,4]
1.恰有一實根在(2,4):
f(2)f(4)<0 => -21/4<m<-9/2
2.有一根為2 or 有一根為4
f(2)=0 or f(4)=0 => m=-9/2 or m=-21/4
3.兩實根皆在[2,4] (令這兩實根為a,b)
因為ab=5 => a = 5/b, 又 2≦b≦4 => 5/4 ≦a≦ 5/2
又a在[2,4] => 2≦a≦5/2(結論)
最後,a+b=-m => a+(5/a)=-m
又a+(5/a)≧2√5[成立於a=(5/a)時, 也就是a=√5時]
且a+(5/a)≦9/2 [成立於a=範圍的兩端, 也就是2 or 5/2]
所以-9/2≦m≦-2√5
綜合以上,-21/4≦m≦-2√5
其實我在想可能有一次算完的方法, 等其他高手來解答吧
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.174.242.176
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1417211616.A.A90.html
※ 編輯: joyfound (1.174.242.176), 11/29/2014 05:56:20
→
11/29 09:53, , 1F
11/29 09:53, 1F
→
11/29 09:54, , 2F
11/29 09:54, 2F
→
11/29 14:11, , 3F
11/29 14:11, 3F
→
11/29 14:12, , 4F
11/29 14:12, 4F
→
11/29 14:12, , 5F
11/29 14:12, 5F
討論串 (同標題文章)