[線代] 一題證明

看板Math作者 (AAAAAAAAAAAAAAAAAAAAAAA)時間11年前 (2014/03/18 11:44), 編輯推噓0(007)
留言7則, 3人參與, 最新討論串6/8 (看更多)
Let A, B and C be n x n matrices. We say that A is similar to B if there is an n x n non-singular matrix P, such that(P-1)AP = B. Prove each of the following statements. (P-1是P的inverse) a. If A is similar to B, then B is similar to A. b. If A is similar to B and B is similar to C, then A is similar to C 第一小題我寫 A=B A=(p-1)AP PA=AP substitute to (P-1)AP=B (P-1)(PA)=B A=B 第二小題 A=B and B=C=(P-1)AP A=(P-1)AP PA=AP substitute to (P-1)AP=C thus (P-1)PA=C A=C 不知道這樣對不對,先謝謝板上神人賜教 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 173.198.43.204

03/18 13:56, , 1F
錯,為什麼一開始就有"A=B"??
03/18 13:56, 1F

03/18 13:58, , 2F
順帶一提,P的反矩陣可以打成 "P^{-1}" "^"是次方
03/18 13:58, 2F

03/18 14:03, , 3F
定義"similar"有它的意義,並不能保證得到 "equal"
03/18 14:03, 3F

03/18 14:26, , 4F
謝謝樓上指正所以我的起手式要怎麼寫啊@@
03/18 14:26, 4F

03/18 15:07, , 5F
因為A和B相似.........
03/18 15:07, 5F

03/18 18:01, , 6F
所以P^{-1}AP = B for some invertible matrix P.
03/18 18:01, 6F

03/18 18:04, , 7F
你只要想辦法找到另一個可逆矩陣Q滿足Q^{-1}BQ=A就好
03/18 18:04, 7F
文章代碼(AID): #1J9y43ul (Math)
討論串 (同標題文章)
文章代碼(AID): #1J9y43ul (Math)