[線代] 一題證明
看板Math作者tim8238818 (AAAAAAAAAAAAAAAAAAAAAAA)時間11年前 (2014/03/18 11:44)推噓0(0推 0噓 7→)留言7則, 3人參與討論串6/8 (看更多)
Let A, B and C be n x n matrices. We say that A is similar to B if there is
an n x n non-singular matrix P, such that(P-1)AP = B. Prove each of the
following statements. (P-1是P的inverse)
a. If A is similar to B, then B is similar to A.
b. If A is similar to B and B is similar to C, then A is similar to C
第一小題我寫
A=B
A=(p-1)AP
PA=AP substitute to (P-1)AP=B
(P-1)(PA)=B
A=B
第二小題
A=B and B=C=(P-1)AP
A=(P-1)AP
PA=AP substitute to (P-1)AP=C
thus (P-1)PA=C
A=C
不知道這樣對不對,先謝謝板上神人賜教
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 173.198.43.204
→
03/18 13:56, , 1F
03/18 13:56, 1F
→
03/18 13:58, , 2F
03/18 13:58, 2F
→
03/18 14:03, , 3F
03/18 14:03, 3F
→
03/18 14:26, , 4F
03/18 14:26, 4F
→
03/18 15:07, , 5F
03/18 15:07, 5F
→
03/18 18:01, , 6F
03/18 18:01, 6F
→
03/18 18:04, , 7F
03/18 18:04, 7F
討論串 (同標題文章)