Re: [中學] 多項式求極值
※ 引述《jewry2005 (猶太)》之銘言:
: ※ 引述《Eric555 (持續)》之銘言:
: : 先說明一下,這題不要用微分,因為我們文組沒有學微分><
: : 題目:
: : 設X屬於R(實數),則當X=??時,f(x)=x^2+x+7+(4/x^2+x+1)有最小值
: : 唉~這題我完全沒頭緒>< 拜託了!><
: f(x) = (x^2+x+1) + 4/(x^2+x+1) + 6
: ∵ (a + b)/2 ≧ √ab
: a + b ≧ 2√ab
: 等號成立時,a = b
: (x^2+x+1) + 4/(x^2+x+1) ≧ 2√4 = 4
: f(x) = 4 + 6 = 10
: (x^2+x+1) = 4/(x^2+x+1)
: (x^2+x+1) = ±2
: x = (-1 ± √5)/2
: ------------------------------------------------------------------------------
: (√a - √b)^2 ≧ 0
: a - 2√ab + b ≧ 0
: a + b ≧ 2√ab
: (a + b)/2 ≧ √ab
: 由第一行知,等號成立時
: √a - √b = 0
: a = b
感謝j大 我覺得我詳細講一下為什麼我卡住好了 我的想法是這樣
(x^2+x+1) + 4/(x^2+x+1) ≧ 2√4 = 4
f(x) = 4 + 6 = 10
以上都沒問題 問題在下面
(x^2+x+1) + 4/(x^2+x+1) ≧ 2√4 = 4 我是把(x^2+x+1)設為A 比較好看,
RT=A+(4/A)=4→ (A^2+4)/A=4→ 4A=A^2+4→ A^2-4A+4=0
(A-2)^2=4→ A=4或-2......(-2不合) 算出來X根答案不一樣
答案事你們講的(-1+-根號5)/2...................嗚嗚.....
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 59.115.74.189
→
05/19 00:02, , 1F
05/19 00:02, 1F
→
05/19 00:03, , 2F
05/19 00:03, 2F
→
05/19 00:04, , 3F
05/19 00:04, 3F
推
05/19 00:04, , 4F
05/19 00:04, 4F
→
05/19 00:04, , 5F
05/19 00:04, 5F
→
05/19 00:06, , 6F
05/19 00:06, 6F
→
05/19 00:06, , 7F
05/19 00:06, 7F
→
05/19 00:08, , 8F
05/19 00:08, 8F
推
05/19 00:10, , 9F
05/19 00:10, 9F
→
05/19 00:10, , 10F
05/19 00:10, 10F
→
05/19 00:10, , 11F
05/19 00:10, 11F
→
05/19 00:12, , 12F
05/19 00:12, 12F
→
05/19 00:13, , 13F
05/19 00:13, 13F
→
05/19 00:13, , 14F
05/19 00:13, 14F
→
08/13 16:52, , 15F
08/13 16:52, 15F
→
09/17 14:48, , 16F
09/17 14:48, 16F
討論串 (同標題文章)