Re: [中學] 一題數學
※ 引述《ckchi (飄)》之銘言:
如果你對於題目有任何問題可以告知主辦的單位
17758這篇也是問雙週一題第一題
每一題都有問題嗎?
這樣再去投稿有意義嗎?
我想還是維持公平性會比較好~
相信斗六高中的學生應該是有能力自己解出來的
或者可由我幫你轉告你數學老師給你一些指導?
有沒有拿到獎是其次, 重點是這過程你學到什麼
我想這才是最重要的!
: → qoolinboy :有沒有全部是相異實數的解 03/12 19:05
: 來回答這個問題
: a式: x + y + z = w
: b式: 1/x + 1/y + 1/z = 1/w
: a代入b: 1/x + 1/y + 1/z = 1/(x+y+z)
: (xy+yz+yz)/xyz = 1/(x+y+z)
: 由於 x,y,z,x+y+z都不為0
: 所以:
: (x+y+z)(xy+yz+zx) = xyz
: => (x+y+z)(xy+yz) + (x+y+z)*xz = xyz
: => y(x+y+z)(x+z) + xz(x+z) = 0
: => (x+z)[y(x+y+z)+xz] = 0
: => (x+z)[y^2+(x+z)y+xz] = 0
: => (x+z)(y+x)(y+z) = 0
: 換言之, x =-z or x =-y or y =-z
: 即: w = y or w = z or w = x
: 所以沒有4個數都相異的解
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 122.122.141.86
→
03/12 23:14, , 1F
03/12 23:14, 1F
推
03/12 23:15, , 2F
03/12 23:15, 2F
→
03/12 23:16, , 3F
03/12 23:16, 3F
→
03/12 23:16, , 4F
03/12 23:16, 4F
→
03/12 23:17, , 5F
03/12 23:17, 5F
→
03/12 23:18, , 6F
03/12 23:18, 6F
→
03/12 23:18, , 7F
03/12 23:18, 7F
→
03/12 23:20, , 8F
03/12 23:20, 8F
→
03/12 23:22, , 9F
03/12 23:22, 9F
→
03/12 23:23, , 10F
03/12 23:23, 10F
→
03/12 23:24, , 11F
03/12 23:24, 11F
→
03/12 23:24, , 12F
03/12 23:24, 12F
→
03/12 23:25, , 13F
03/12 23:25, 13F
→
03/12 23:26, , 14F
03/12 23:26, 14F
→
03/12 23:27, , 15F
03/12 23:27, 15F
→
03/12 23:28, , 16F
03/12 23:28, 16F
推
03/13 00:48, , 17F
03/13 00:48, 17F
→
03/13 00:49, , 18F
03/13 00:49, 18F
→
03/13 00:50, , 19F
03/13 00:50, 19F
推
03/13 10:59, , 20F
03/13 10:59, 20F
推
03/13 13:15, , 21F
03/13 13:15, 21F
→
03/13 13:16, , 22F
03/13 13:16, 22F
→
03/13 13:17, , 23F
03/13 13:17, 23F
→
03/13 13:17, , 24F
03/13 13:17, 24F
推
03/13 15:24, , 25F
03/13 15:24, 25F
討論串 (同標題文章)