Re: [中學] 一題數學

看板Math作者 (邁向名師之路)時間8年前 (2017/03/02 13:08), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串25/32 (看更多)
※ 引述《dagood (魯叔->廢伯)》之銘言: : 4( a^2 +ab+b^2)=49(a+b) : a,b為相異正整數 : 如何解出a,b呢 移項得(a^2+ab+b^2)/(a+b)=49/4=12.25 左=(a+b)- ab/(a+b) 可知a+b>12, 又 4 | (a+b) 可設a+b=4k>12 => k>3 再由算術平均數≧調和平均數可知 (a+b)/2 ≧ 2ab/(a+b) 得ab/(a+b) ≦ (a+b)/4 故(a+b)- ab/(a+b) ≧ (a+b)- (a+b)/4 = (3/4)(a+b) =3k 得3k ≦ 12.25 => k ≦ 4 故k=4, 則a+b=16, 代回得ab=60, 解得(a,b)=(10,6)或(6,10) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.46.43.239 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1488431329.A.03E.html
文章代碼(AID): #1OjwZX0- (Math)
討論串 (同標題文章)
文章代碼(AID): #1OjwZX0- (Math)