Re: [微積] 三題微積分

看板Math作者 (披著狼皮的羊)時間15年前 (2011/02/18 12:56), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串4/11 (看更多)
F(x)=sin(x^2) g(x)=sin^2(x) F'(x)=cos(x^2)*2x->F'(0)=1*0=0 =>F'(0)=G'(0) G'(x)=2*sin(x)cos(x)->G'(0)=2*0*1=0 F''(x)=-sin(x^2)*2x+2*cos(x^2)->F''(pi/6)=-sin(pi/36)*pi/3+2*cos(pi/36) G''(x)=2[cos^2(x)-sin^2(x)]->G''(pi/6)=2(3/4-1/4)=1 明顯F''(x)>G''(x) F''(x) F'(t)-F'(0) ------=----------- > 1 => F'(t)>G'(t) G''(x) G'(t)-G'(0) F'(x) F(t)-F(0) -----=----------->1 因F(0)=G(0) 所以 F(x)>G(x) => sin(x^2)>sin^2(x) G'(x) G(t)-G(0) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.166.0.150
文章代碼(AID): #1DNVlbHK (Math)
討論串 (同標題文章)
文章代碼(AID): #1DNVlbHK (Math)