[理工] 線代
3 3
Let T be the linear transfomation from R to R with
T(1,1,1)=(1,2,3),T(1,-1,1)=(1,0,1) and T(3,-1,-2)=
(3,2,0). Find T(x,y,z),the characteristic polynomial
,and the ker of T.
解答是先解出x,y,z的轉換,我想問的是,我可以用
B={(1,1,1),(1,-1,1),(3,-1,-2)}作為基底直接寫出
[T]B,然後用這個基底下去求特徵多項式和ker(T)嗎?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.193.7.20
推
10/03 21:26, , 1F
10/03 21:26, 1F
→
10/03 21:28, , 2F
10/03 21:28, 2F
→
10/03 21:38, , 3F
10/03 21:38, 3F
用這題好像不太適合,那如果是這個題目呢?
2
Assume v1 and v2 are two linearly independent vectors in R
2 2
and T:R —>R is a linear transformation defined as
T(v1+v2)=3v1+3v2 ; T(v1-2v2)=-3v2
Could you find any vector p such that T(p)=入p?
這題我就是直接以B={v1+v2,v1-2v2)下去求eigenvalue
題目沒有強制要求要以什麼形式,那這樣做ok嗎?
※ 編輯: KAINTS 來自: 123.193.7.20 (10/03 21:45)
推
10/03 21:57, , 4F
10/03 21:57, 4F
→
10/03 21:57, , 5F
10/03 21:57, 5F
推
10/03 22:00, , 6F
10/03 22:00, 6F
推
10/03 22:00, , 7F
10/03 22:00, 7F
推
10/03 22:05, , 8F
10/03 22:05, 8F
→
10/03 22:05, , 9F
10/03 22:05, 9F
→
10/03 22:07, , 10F
10/03 22:07, 10F
→
10/03 22:08, , 11F
10/03 22:08, 11F
→
10/03 22:08, , 12F
10/03 22:08, 12F
※ 編輯: KAINTS 來自: 123.193.7.20 (10/03 22:09)
推
10/03 22:18, , 13F
10/03 22:18, 13F
→
10/03 22:20, , 14F
10/03 22:20, 14F
→
10/03 22:21, , 15F
10/03 22:21, 15F
→
10/03 22:22, , 16F
10/03 22:22, 16F
→
10/03 22:26, , 17F
10/03 22:26, 17F
→
10/03 22:26, , 18F
10/03 22:26, 18F
→
10/03 22:29, , 19F
10/03 22:29, 19F
推
10/03 22:31, , 20F
10/03 22:31, 20F
→
10/03 22:34, , 21F
10/03 22:34, 21F
討論串 (同標題文章)