作者查詢 / LPH66
作者 LPH66 在 PTT [ Prob_Solve ] 看板的留言(推文), 共389則
限定看板:Prob_Solve
看板排序:
全部Math8895C_and_CPP6694Minecraft2011puzzle1798Little-Games1256PHP992Web_Design736killercorp717java657SYSOP599Programming587Mathematica451Windows394IME389Prob_Solve389Ajax321RegExp298b94902xxx229PttBug229HOT_Game210Visual_Basic207Inference204Hunter198Steam168NTU-K9167KS94-317160EzHotKey138BoardGame131Conan122HarryPotter120CSSE116Flash104Database96GameDesign94AndroidDev91Android90Kindaichi_Q88Wikipedia74LaTeX71BBSmovie59SMSlife57DeathNote54riddle52Weyslii49wretch42IMO_Taiwan38Suckcomic38b96902HW37NTU37b94902HW35Doraemon30NTU-MAGIC26NTUDormM723NTUcourse21ONE_PIECE19b95902xxx18KSHS_Talk18b95902HW15NTNU_Lin_9615PLT15C_Chat14CSCouncil11PttCurrent11transgender9Translate-CS9VR9NTUDormG18Education7HSNU_10857KS93-3207NCKU-BEH957NDMC-D627PttNewhand7b99902HW6hikarugo6NtuDormM16youtuber6b96902xxx5b97902HW5CompilerDev5GO5L_LifeInfo5MJ5NSwitch5SummerCourse5tutor5Hsinchu4Liu4PushDoll4AppsForBBS3b98902HW3CSIE_WSLAB3Gossiping3Kao-KSHS3KS93-3163NARUTO3NTUST-DT93-23RSSH94_3013b97902xxx2ck50th3232ck55th3252ck58th3122CS_Badminton2CSIE_Mahjong2NANLIN3012NDHU-His962NTUDormFJr2NTUGIEE_EDA2PCman2PCSH91_3052PttSuggest2PttWeb2SFFamily2WinMine2Abin1AGO1Aquarius1Army-Sir1ASHS-93-li1AskaYang1B92310XXX1b99902xxx1blind_pc1Browsers1CCSH_92_3161CGU-MED-991CGU_EE981ck55th1201ck55th3241ck56th3181CK84Courage1CLHS-53-131CM38th071consumer1CPU_AM7011CPU_FC7311CSMU-MED941CTSH913021CTSH923051DaZhi6thH3021Eclipse1FJU-AM-901FJU-BA92C1FJU_GF1FSHS-94-3181Google1Grad-ProbAsk1Greenfield1HKday1Hoobastank1HORTUS-911HSNU_10731HSNU_9291HSNU_9381HSNU_9581HSNU_9851HSNU_9891HSNU_9901Hu_Yen_20041HY-40-Xin1ILSH-943131INSECT-901Itchie1Jay1JH30th3061Jinmen1joke1kekkai1KhalilFong1KS90-3091KS94-3151KS94-3211KS98-3021lab6211LD_IM93-21MATLAB1MDscience6th1Moto_GP1MuscleBeach1NCCU00_Stat1NCCU02_PSYCH1NCCU03_ETHNO1NCCU03_PF1NCCU04_MAT1NCCU04_Stat1NCCU98_RMI1NCCU99_Stat1NCHU-AGR001NCHU-AGR071NCKU-PH981NCUFingrad031Network1NIUECE911NTNU_bridge1NTOU-YP1NTPU-JLAW941NTPU_CK_CM1NTU-GIIB20021NTU-GIIB20041NTU95thLIS1NTUBIME-1021NTUCH-941NTUDormM61NTUE-Art961NTUE-CS1031NTUE_Nse961NTUE_Nse981NTUHistory881NTUHorti961NTUKGA1NTUMath911NTUMath941NTUMT-921NTUMystery1NTUNewPlace1NTUST-DT92-11NTUT_EE490A1NUTN_SSSS1Oguri_Shun1Old-Games1onlychild1Peitou29t3161Penny1PERCUSSION1PokeMon1PttHistory1Romances1RSSH93_3071SCU_ACCM971SM02th031SM05th3xx1SOFTSTAR1SSSH-13th3111STDM-87-3051Stephen1streetsinger1TFGCRC1THU-P-Softbo1TigerBlue1TMU9711Translation1TSH97_YK1Ur-hsing1VET_921w-inds1wegoJT3021WuLing46-3051WuLing46-3171YP91-3121YP92-3011YP92-3031YP94-3141<< 收起看板(252)
1F推:每個人有自己的 private key 並公佈自己的 public key03/08 18:04
2F→:要通訊時只需找到該人公佈的 public key 即可03/08 18:04
3F→:所以一共需要十對 key (我是不太懂這個"組"是怎麼算的就是)03/08 18:05
1F推:個人覺得再怎麼變都不脫同一條思路: 遞迴地由兩子樹建立全樹02/19 02:54
2F推:像 21845 這種數(二進位 101010101010101)你的方法會死很大01/23 13:49
3F→:不論你之後的基底如何你都得要花這麼多東西描述每一位01/23 13:49
4F→:這其實就只是個 RLE 而已01/23 13:50
2F推:再加兩個符號就變成 base64 了01/22 18:58
3F→:極端一點把可見 ascii 拿來用就是 Ascii8501/22 18:58
1F推:你這18條方程全部都是 A[x] 的線性方程12/30 22:42
2F→:那變數只有 12 個當然無解...12/30 22:42
1F→:discrete 不一定要在整點 只要是分開的一些點就行了...12/17 14:00
2F→:以你的例子來說 P(W=1.5)=P(Y=3)P(X=2) 像這樣而已12/17 14:01
2F推:他的問題大概在部份分式...12/03 00:06
3F推:那句話我會翻成「求第二式之根可得 c^1/n」11/17 22:24
2F推:visible ascii 其實只有 94 個 (33~126)...11/13 00:40
3F→:所以其實並不到 50%11/13 00:41
4F→:嚴格一點算的話最多是 log_94 10 = 0.50681 即 50.7%11/13 00:41
5F→:也就是至少要 18 個字11/13 00:42
6F→:不過要達成這樣你得自己寫個 34 位的大數除11/13 00:43
7F→:如果不要用大數除就只好九位一組(0~10^9-1)變成94進位五個字11/13 00:46
8F→:這樣還是有 55.56%11/13 00:46
6F推:或許A-B的longest path其實是A-E-B 而E卻不在A-C C-B當中11/01 17:16