Re: [請益] 國二數學(一元二次方程式)
我替這樣的題目說明依下, 先舉例:
EX. 試問方程式x^2+x+1=0 若化能成ax^2+4x+c=0 求a ,c 之值?
我想, 上面這樣的題目,
應該不會有人懷疑x有沒有實數解, 同此題.
再則, 我的處理方法同之前的版友,
處理方程式4x^2+8x+c=0可化成a(x+b)^2+3=0,且a、b、c為正整數.
先把左式化成 4(x+1)^2+c-4=0 比較a(x+b)^2+3=0
所以,
4/a = (c-4)/3 => a(c-4)=12 (特別是a,b,c為正整數)
=12*1
= 6*2
= 4*3
= 3*4
= 2*6
= 1*12
結論, b=1, a和c各6解.
至於範圍, 我想訂在在高一第一冊第一章比較適合, 是屬於因數與比較係數的結合.
※ 引述《lootech (lootech)》之銘言:
: 我看不懂
: 題目是不是有多打=0??
: 不然國中生應該有要求 任何數的平方為正數或零
: 他們沒有教到平方有負數 這是高中學的
: 所以a(x+b)^2+3=0
: a(x+b)^2=-3
: a又是正整數 表示 (x+b)^2=-3/a 是負數
: 怎麼可以作答???
: 題目若是改成減3是不是較好
: ※ 引述《veve1022 (veve)》之銘言:
: : 題目:
: : 若方程式4x^2+8x+c=0可化成a(x+b)^2+3=0,且a、b、c為正整數。
: : 則下列何者正確?
: : (A) a的可能值只有1個
: : (B) a的可能值有3個
: : (C) b的可能值只有1個
: : (D) c的可能值有3個
: : 答案是(C)
: : 不曉得有沒有比較快的方法...
: : 我目前只想到一種一種慢慢討論... >___<
: : 請各位幫幫我吧!!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 59.105.186.103
討論串 (同標題文章)