[微積] 辛普森法
從辛普森法的推導可知每次需要三個點來去找出一個拋物線,
這樣是不是表示辛普森法在某些點數限制下會有很大的誤差呢??
例如 let I_n = int exp(x)dx from 0~1, dx = 1/n,
若是取 n = 10 則誤差會很大,n = 11 誤差則是會很小
是否是因為只有10個點在邊邊沒有辦法有足夠的點數去找出一條拋物線??
n int exp(x)dx from 0~1 error(calculation - real value)
6 1.7189001640989792 6.1834e-004
7 1.7182841546998970 2.3262e-006
8 1.7185770700164256 2.9524e-004
9 1.7182827819248239 9.5347e-007
10 1.7184450515827283 1.6322e-004
11 1.7182822884380204 4.5998e-007
12 1.7183813535178587 9.9525e-005
13 1.7182820767986728 2.4834e-007
14 1.7183469225853738 6.5094e-005
15 1.7182819740518918 1.4559e-007
16 1.7183267068743548 4.4878e-005
17 1.7182819193608108 9.0902e-008
18 1.7183140659415748 3.2237e-005
19 1.7182818881038566 5.9645e-008
20 1.7183057597112446 2.3931e-005
21 1.7182818691993578 4.0740e-008
22 1.7183000786192362 1.8250e-005
23 1.7182818572255549 2.8767e-008
24 1.7182960623783012 1.4234e-005
25 1.7182818493448890 2.0886e-008
26 1.7182931431976525 1.1315e-005
27 1.7182818439873422 1.5528e-008
28 1.7182909706740290 9.1422e-006
29 1.7182818402426843 1.1784e-008
30 1.7182893205681540 7.4921e-006
31 1.7182818375617719 9.1027e-009
32 1.7182880448345867 6.2164e-006
33 1.7182818356017304 7.1427e-009
34 1.7182870430494297 5.2146e-006
35 1.7182818341419714 5.6829e-009
36 1.7182862454555616 4.4170e-006
37 1.7182818330367911 4.5777e-009
38 1.7182856025702056 3.7741e-006
39 1.7182818321876780 3.7286e-009
40 1.7182850786302126 3.2502e-006
41 1.7182818315266219 3.0676e-009
42 1.7182846473515589 2.8189e-006
43 1.7182818310057846 2.5467e-009
44 1.7182842891229824 2.4607e-006
45 1.7182818305909418 2.1319e-009
46 1.7182839891103716 2.1607e-006
47 1.7182818302572309 1.7982e-009
48 1.7182837359524423 1.9075e-006
--
!!!!!!!!!!!!!簽名檔破710000點擊率啦!!!!!!!!!!!!!!!
Fw: [問卦] 電影:決勝21點的機率問題 https://goo.gl/2BpbB7 #1MfN3FgZ (joke)
→
07/22 16:41,
07/22 16:41
!!!!!!!!!!!!!!簽名檔破710000點擊率啦!!!!!!!!!!!!!!
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 27.246.222.16
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1539429197.A.9B3.html
→
10/13 19:18,
7年前
, 1F
10/13 19:18, 1F
→
10/13 19:19,
7年前
, 2F
10/13 19:19, 2F
→
10/13 19:28,
7年前
, 3F
10/13 19:28, 3F
→
10/13 19:30,
7年前
, 4F
10/13 19:30, 4F
→
10/13 19:31,
7年前
, 5F
10/13 19:31, 5F
→
10/13 19:47,
7年前
, 6F
10/13 19:47, 6F
→
10/13 19:48,
7年前
, 7F
10/13 19:48, 7F
補上 n from 6 to 48 的結果,可以看到當 n 為奇數時誤差皆比 n 為偶數時小很多,
且 n = 7 的結果甚至比 n = 44 的結果還要準
※ 編輯: j0958322080 (27.246.222.16), 10/13/2018 21:16:30
→
10/13 21:22,
7年前
, 8F
10/13 21:22, 8F
→
10/13 21:23,
7年前
, 9F
10/13 21:23, 9F
→
10/13 21:23,
7年前
, 10F
10/13 21:23, 10F
→
10/13 21:24,
7年前
, 11F
10/13 21:24, 11F
抱歉我更新一下,我的程式在偶數時最後一個是用梯形法做計算,
如果單純都是用辛普森的話誤差如下
n int exp(x)dx from 0~1 error(calculation - real value)
6 1.5980739671741528 -1.2021e-001
7 1.7182841546998970 2.3262e-006
8 1.6231936018174213 -9.5088e-002
9 1.7182827819248239 9.5347e-007
10 1.6396519165360308 -7.8630e-002
11 1.7182822884380204 4.5998e-007
12 1.6512620586153866 -6.7020e-002
13 1.7182820767986728 2.4834e-007
14 1.6598885507379624 -5.8393e-002
15 1.7182819740518918 1.4559e-007
16 1.6665494837180628 -5.1732e-002
17 1.7182819193608108 9.0902e-008
18 1.6718474349406003 -4.6434e-002
19 1.7182818881038566 5.9645e-008
20 1.6761616702328803 -4.2120e-002
21 1.7182818691993578 4.0740e-008
22 1.6797427603549153 -3.8539e-002
23 1.7182818572255549 2.8767e-008
24 1.6827628736990865 -3.5519e-002
25 1.7182818493448890 2.0886e-008
26 1.6853442040780759 -3.2938e-002
27 1.7182818439873422 1.5528e-008
28 1.6875758701861097 -3.0706e-002
29 1.7182818402426843 1.1784e-008
30 1.6895243939056623 -2.8757e-002
31 1.7182818375617719 9.1027e-009
32 1.6912404335628202 -2.7041e-002
33 1.7182818356017304 7.1427e-009
34 1.6927632455591424 -2.5519e-002
35 1.7182818341419714 5.6829e-009
36 1.6941237207042887 -2.4158e-002
37 1.7182818330367911 4.5777e-009
38 1.6953464995024061 -2.2935e-002
39 1.7182818321876780 3.7286e-009
40 1.6964514766067584 -2.1830e-002
41 1.7182818315266219 3.0676e-009
42 1.6974548907495663 -2.0827e-002
43 1.7182818310057846 2.5467e-009
44 1.6983701275283483 -1.9912e-002
45 1.7182818305909418 2.1319e-009
46 1.6992083195816754 -1.9074e-002
47 1.7182818302572309 1.7982e-009
48 1.6999788013975314 -1.8303e-002
而辛普森的一般式為
I_n = f(a) + f(b) + 4*f(x_odd) + 2*f(even) 僅如此而已
但如果從遞迴關係的話就是 I_n = f(x_(n-2)) + 4*f(x_(n-1)) + f(x_(n)), n = even
※ 編輯: j0958322080 (27.246.222.16), 10/13/2018 21:34:45
→
10/13 21:34,
7年前
, 12F
10/13 21:34, 12F
→
10/13 21:35,
7年前
, 13F
10/13 21:35, 13F
→
10/13 21:35,
7年前
, 14F
10/13 21:35, 14F
→
10/13 21:39,
7年前
, 15F
10/13 21:39, 15F
→
10/13 21:41,
7年前
, 16F
10/13 21:41, 16F
→
10/13 21:41,
7年前
, 17F
10/13 21:41, 17F
→
10/13 21:43,
7年前
, 18F
10/13 21:43, 18F
→
10/13 21:43,
7年前
, 19F
10/13 21:43, 19F
→
10/13 21:44,
7年前
, 20F
10/13 21:44, 20F
→
10/13 21:48,
7年前
, 21F
10/13 21:48, 21F
→
10/13 21:48,
7年前
, 22F
10/13 21:48, 22F
→
10/13 21:49,
7年前
, 23F
10/13 21:49, 23F
→
10/13 21:50,
7年前
, 24F
10/13 21:50, 24F
→
10/13 21:50,
7年前
, 25F
10/13 21:50, 25F
→
10/13 21:51,
7年前
, 26F
10/13 21:51, 26F
→
10/13 21:51,
7年前
, 27F
10/13 21:51, 27F
→
10/13 21:52,
7年前
, 28F
10/13 21:52, 28F
→
10/13 21:53,
7年前
, 29F
10/13 21:53, 29F
→
10/13 22:01,
7年前
, 30F
10/13 22:01, 30F
→
10/13 22:21,
7年前
, 31F
10/13 22:21, 31F
→
10/13 22:22,
7年前
, 32F
10/13 22:22, 32F
→
10/13 22:38,
7年前
, 33F
10/13 22:38, 33F
→
10/13 22:41,
7年前
, 34F
10/13 22:41, 34F
→
10/13 22:43,
7年前
, 35F
10/13 22:43, 35F
→
10/13 22:45,
7年前
, 36F
10/13 22:45, 36F
→
10/13 22:45,
7年前
, 37F
10/13 22:45, 37F
→
10/13 22:46,
7年前
, 38F
10/13 22:46, 38F
→
10/13 22:47,
7年前
, 39F
10/13 22:47, 39F
→
10/13 22:55,
7年前
, 40F
10/13 22:55, 40F
→
10/13 23:00,
7年前
, 41F
10/13 23:00, 41F
→
10/13 23:00,
7年前
, 42F
10/13 23:00, 42F
→
10/13 23:13,
7年前
, 43F
10/13 23:13, 43F
→
10/13 23:24,
7年前
, 44F
10/13 23:24, 44F
討論串 (同標題文章)