Re: [中學] 請教算式解法

看板Math作者 (真。盤古大洋)時間7年前 (2018/03/09 11:46), 編輯推噓1(100)
留言1則, 1人參與, 7年前最新討論串4/6 (看更多)
※ 引述《sam206 ()》之銘言: : 2)設x,y,z均為正整數,滿足 x^3+y^3+z^3=3xyz,且x^2=2(y+z),求x,y,z (x^2 + y^2 + z^2)(x + y + z) = (x^3 + y^3 + z^3) + ( x^2(y+z) + y^2(x+z) + z^2(x+y) ) = 3xyz + ( x^2(y+z) + y^2(x+z) + z^2(x+y) ) = (xy + yz + xz)(x + y + z) 因為 x, y, z 均為正整數 => xy + yz + xz = x^2 + y^2 + z^2 x^2 - (y + z)x + (y^2 + z^2 - yz) = 0 x 判別式 D = (y + z)^2 - 4(y^2 + z^2 - yz) = -3(y^2 - 2yz + z^2) = -3(y - z)^2 >= 0 => y = z 同理, x = y = z 又 x^2 = 2(x+x) => x = y = z = 4 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 49.159.12.195 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1520567215.A.1EB.html

03/09 11:50, 7年前 , 1F
=(x+y+z)0.5[(x-y)^2+(y-z)^2+(z-x)^2)=0 x=y=z
03/09 11:50, 1F
文章代碼(AID): #1QeWEl7h (Math)
討論串 (同標題文章)
文章代碼(AID): #1QeWEl7h (Math)