[機統] 基於某分布的期望值"定義"(1000p)

看板Math作者 (QQ)時間8年前 (2018/01/23 10:58), 8年前編輯推噓0(008)
留言8則, 1人參與, 8年前最新討論串1/4 (看更多)
想請問一下 一群資料{x_i}, 分布是p(x), g為定義在那群樣本空間上的實函數 那 E_{x~p(x)}[g(x)]的正式定義為何? 以下是歸納過程: ------------------------ 令(Ω,Σ,P)為一樣本空間, X:Ω→R為隨機變數 則 E[X] := ∫ X(w)dP(w) Ω 然後實變定理說可以將之轉成Riemann-Stieltjes integral ∞ = ∫ x dF(x) , where F(x) = P({w€Ω:X(w)≦x}) 簡寫為P(X≦x) -∞ 之後根據Radon-Nikodym定理知道存在density function f(x) ∞ = ∫ x*f(x) dx -∞ 這一切都很合理 但是 這篇GAN創始者的paper中的 E_{x~p(x)}[g(x)] https://arxiv.org/abs/1406.2661 在證明時直接寫 E_{x~p(x)}[g(x)] = ∫ p(x)*g(x) dx x 我做了以下嘗試還是跟原本定義(稱作(*))兜不起來: (1) x照paper應該是原始資料,所以應該是(*)的w 但是w~p(w)代表w符合某個分布, 但是(*)只有機率函數F(x)與機率密度函數f(x) 失敗 (2) x是實數,p(x)就是(*)中的f(x),但是(*)的E[X]寫成最後形式後並不會有X(x) 而且X裡面擺的是樣本吧 (3) x是多變數....算了又不合 ------------------------------------------ 總之問題總結為: E_{x~p(x)}[g(x)] = ∫ p(x)*g(x) dx ----(●) x (a) why?? (b) x? (*)中的w? (c) 以後看到x~p(x), p(x)是指機率函數還是機率密度函數? (d) 承(c), 不論是哪一個, 照(*)的setting, 此函數的domain應該是實數吧? 但是在(●)又很像w,但是又沒有p(w)... --------------------------------------- 第一個完整說明的板友1000p 感謝幫忙~ 猜來猜去花好多時間QQ -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 210.242.52.37 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1516676320.A.723.html

01/23 12:09, 8年前 , 1F
因為Omega沒有定義如何operate那些w 但是R有(加減
01/23 12:09, 1F

01/23 12:09, 8年前 , 2F
乘除積微分等) 所以才需要轉換到可以操作的地方來
01/23 12:09, 2F

01/23 12:09, 8年前 , 3F
01/23 12:09, 3F
沒有耶 令(Ω,Σ,P)為一樣本空間, X:Ω→R為隨機變數 則 E[X] := ∫ X(w)dP(w) Ω 如此一來這個E[X]就是well-defined阿 簡單來說 E_{x~p(x)}[g(x)] = ∫ p(x)*g(x) dx ----(●) x 這個式子p是啥 and 如何證

01/23 12:57, 8年前 , 4F
沒錯啊 X不是把w投到R去了嗎 你原本expectation的
01/23 12:57, 4F

01/23 12:57, 8年前 , 5F
式子是無法計算的 所以才要到R去
01/23 12:57, 5F

01/23 12:59, 8年前 , 6F
int p(x)dF(x)可以看成是projection
01/23 12:59, 6F
x是實數還是樣本空間的w?? ※ 編輯: znmkhxrw (220.128.169.29), 01/23/2018 13:51:48

01/23 14:23, 8年前 , 7F
x是實數 你要對應w 那麼關係就是 x = X^-1(w) 這就
01/23 14:23, 7F

01/23 14:23, 8年前 , 8F
是為什麼我們需要定義隨機變數X的原因
01/23 14:23, 8F
文章代碼(AID): #1QPgJWSZ (Math)
討論串 (同標題文章)
文章代碼(AID): #1QPgJWSZ (Math)