Re: [線代] 矩陣填空使其"不"可對角化

看板Math作者 (topos)時間8年前 (2017/12/29 02:43), 8年前編輯推噓3(307)
留言10則, 3人參與, 8年前最新討論串2/3 (看更多)
※ 引述《cyt147 (大叔)》之銘言: : Determine all values of a,b,c,d,e,f in R so that : 1 a b c : 0 1 d e : A=( 0 0 2 f ) is NOT diagonalizable. : 0 0 0 2 : A為upper-triangular,所以它的eigenvalue為主對角線的entry,也就是1跟2,而且 : 它們的algebraic multiplicity皆為2,根據我學到的知識: : A is not diagonalizable if and only if dim(E_1)=1, or dim(E_2)=1, : where E_i denotes the eigenspace of A corresponding to i. That is to say, : A is not diagonalizable if and only if one of its eigenvalues has geometric : multiplicity unequal to its algebraic multiplicity. : To attain the above result, I need to find the eigenspaces of A. But ther : are so many unknowns in the system of linear equations that I can't proceed : as usual. Can somebody please tell me how to deal with this kind of situation? Since the eigenvalues of A are 1 and 2, A is diagonalizable <=> the minimal polynomial of A is (x-1)(x-2) i.e. (A-I)(A-2I)=0 <=> (0 a b c)(-1 a b c) = (0 -a ad ae+bf) =0 0 0 d e 0 -1 d e (0 0 0 df ) 0 0 1 f 0 0 0 f (0 0 0 f ) 0 0 0 1 0 0 0 0 (0 0 0 0 ) <=> a、d、f、(ae+bf)=0. Hence, A is not diagonalizable <=> a*d*f*(ae+bf)!=0 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.161.37.63 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1514486619.A.808.html

12/29 08:23, 8年前 , 1F
謝謝,請讓我想一下,我看過您第一段用的定理。
12/29 08:23, 1F

12/29 11:02, 8年前 , 2F
欸欸欸欸欸居然qw q
12/29 11:02, 2F

12/29 12:51, 8年前 , 3F
還是覺得怪怪的
12/29 12:51, 3F

12/29 12:51, 8年前 , 4F
[[1,1,0,0],[0,1,0,0],[0,0,2,1],[0,0,0,2]]
12/29 12:51, 4F

12/29 12:52, 8年前 , 5F
這傢伙明顯not diagonalizable 吧
12/29 12:52, 5F

12/29 12:55, 8年前 , 6F
啊 應該是 a and f and ad and df and ae+bf all
12/29 12:55, 6F

12/29 12:55, 8年前 , 7F
zero 才對吧 這樣就沒錯了
12/29 12:55, 7F

12/29 13:23, 8年前 , 8F
這樣不就等價於a=f=0?之前我的做法還正確嗎?
12/29 13:23, 8F

12/29 13:23, 8年前 , 9F
我是說free variable那個
12/29 13:23, 9F

12/30 13:27, 8年前 , 10F
漂亮~~
12/30 13:27, 10F
※ 編輯: Sfly (114.45.201.160), 12/30/2017 21:14:13
文章代碼(AID): #1QHJjRW8 (Math)
文章代碼(AID): #1QHJjRW8 (Math)