Re: [線代] 矩陣填空使其"不"可對角化
※ 引述《cyt147 (大叔)》之銘言:
: Determine all values of a,b,c,d,e,f in R so that
: 1 a b c
: 0 1 d e
: A=( 0 0 2 f ) is NOT diagonalizable.
: 0 0 0 2
: A為upper-triangular,所以它的eigenvalue為主對角線的entry,也就是1跟2,而且
: 它們的algebraic multiplicity皆為2,根據我學到的知識:
: A is not diagonalizable if and only if dim(E_1)=1, or dim(E_2)=1,
: where E_i denotes the eigenspace of A corresponding to i. That is to say,
: A is not diagonalizable if and only if one of its eigenvalues has geometric
: multiplicity unequal to its algebraic multiplicity.
: To attain the above result, I need to find the eigenspaces of A. But ther
: are so many unknowns in the system of linear equations that I can't proceed
: as usual. Can somebody please tell me how to deal with this kind of situation?
Since the eigenvalues of A are 1 and 2,
A is diagonalizable
<=> the minimal polynomial of A is (x-1)(x-2)
i.e. (A-I)(A-2I)=0
<=>
(0 a b c)(-1 a b c) = (0 -a ad ae+bf) =0
0 0 d e 0 -1 d e (0 0 0 df )
0 0 1 f 0 0 0 f (0 0 0 f )
0 0 0 1 0 0 0 0 (0 0 0 0 )
<=> a、d、f、(ae+bf)=0.
Hence, A is not diagonalizable <=> a*d*f*(ae+bf)!=0
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.161.37.63
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1514486619.A.808.html
推
12/29 08:23,
8年前
, 1F
12/29 08:23, 1F
→
12/29 11:02,
8年前
, 2F
12/29 11:02, 2F
→
12/29 12:51,
8年前
, 3F
12/29 12:51, 3F
→
12/29 12:51,
8年前
, 4F
12/29 12:51, 4F
→
12/29 12:52,
8年前
, 5F
12/29 12:52, 5F
→
12/29 12:55,
8年前
, 6F
12/29 12:55, 6F
→
12/29 12:55,
8年前
, 7F
12/29 12:55, 7F
推
12/29 13:23,
8年前
, 8F
12/29 13:23, 8F
→
12/29 13:23,
8年前
, 9F
12/29 13:23, 9F
推
12/30 13:27,
8年前
, 10F
12/30 13:27, 10F
※ 編輯: Sfly (114.45.201.160), 12/30/2017 21:14:13
討論串 (同標題文章)
以下文章回應了本文:
完整討論串 (本文為第 2 之 3 篇):