[線代] 矩陣填空使其"不"可對角化

看板Math作者 (大叔)時間8年前 (2017/12/27 19:59), 8年前編輯推噓1(106)
留言7則, 3人參與, 8年前最新討論串1/3 (看更多)
Determine all values of a,b,c,d,e,f in R so that 1 a b c 0 1 d e A=( 0 0 2 f ) is NOT diagonalizable. 0 0 0 2 A為upper-triangular,所以它的eigenvalue為主對角線的entry,也就是1跟2,而且 它們的algebraic multiplicity皆為2,根據我學到的知識: A is not diagonalizable if and only if dim(E_1)=1, or dim(E_2)=1, where E_i denotes the eigenspace of A corresponding to i. That is to say, A is not diagonalizable if and only if one of its eigenvalues has geometric multiplicity unequal to its algebraic multiplicity. To attain the above result, I need to find the eigenspaces of A. But there are so many unknowns in the system of linear equations that I can't proceed as usual. Can somebody please tell me how to deal with this kind of situation? -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 123.193.88.184 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1514375946.A.E45.html ※ 編輯: cyt147 (123.193.88.184), 12/27/2017 19:59:43 ※ 編輯: cyt147 (123.193.88.184), 12/27/2017 20:01:01

12/27 20:25, 8年前 , 1F
use the eigen function and you have a trivial eq
12/27 20:25, 1F

12/27 20:25, 8年前 , 2F
uation with the 4th row of A. Then one eigenvalu
12/27 20:25, 2F

12/27 20:25, 8年前 , 3F
e is determined and proceed on with the results
12/27 20:25, 3F
Eigenfunction?! 可能我誤會什麼了?那不是解微分方程用的嗎? 我剛剛想到free variable,用這個會得到: a=f=0 if and only if A is diagonalizable. 取negation得: a≠0 V f≠0 if and only if A is not diagonalizable. 至於b,c,d,e,因為沒有限制,所以隨意填沒關係。 但我認為自己算錯了,答案應該沒這麼簡單,請問板友怎麼看呢? ※ 編輯: cyt147 (123.193.88.184), 12/27/2017 21:15:41

12/27 21:38, 8年前 , 4F
你是對的
12/27 21:38, 4F

12/27 21:45, 8年前 , 5F
S=[[1,0,b,c],[0,1,d,e],[0,0,1,0],[0,0,0,1]]
12/27 21:45, 5F

12/27 21:45, 8年前 , 6F
then S^(-1) A S = D which is diagonal
12/27 21:45, 6F
還是沒什麼把握,因為是台大數研的考題,然後我線代蠻爛的。決定明早再驗算。 ※ 編輯: cyt147 (123.193.88.184), 12/28/2017 08:58:32 應該沒錯,如果想知道什麼是free variable,可以去看Leon的線代,這應該會在解 system of linear equations那個章節出現。 ※ 編輯: cyt147 (123.193.88.184), 12/28/2017 09:19:10

12/28 14:48, 8年前 , 7F
(A-I)(A-2I)!=0
12/28 14:48, 7F
謝謝,願聞其詳。 ※ 編輯: cyt147 (123.193.88.184), 12/28/2017 20:07:52
文章代碼(AID): #1QGuiAv5 (Math)
文章代碼(AID): #1QGuiAv5 (Math)