Re: [工數]一題ODE
※ 引述《unixxxx (皓皓)》之銘言:
: 請問下面這題要怎麼解......
: 試了grouping 和公式法 一直都解不出來QQ
: dy/dx=(y-xy^2-x^3)/(x+yx^2+y^3)
: 答案為1/2(x^2+y^2)+tan^-1(y/x)=c
: 有沒有好心人幫我看一下 我一直找不到積分因子 ...解不了 謝謝!
dy/dx=(y-xy^2-x^3)/(x+yx^2+y^3)
=> xdy - ydx + (yx^2 + y^3)dy + (xy^2 + x^3)dx = 0
=> [1/(x^2 + y^2)] * [xdy - ydx] + ydy + xdx = 0
=> {1/[1 + (y/x)^2]} * d(y/x) + (1/2)d(y^2 + x^2) = 0
=> arctan(y/x) + (1/2)(x^2 + y^2) = c
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.56.10.112
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1487138751.A.49B.html
→
02/15 14:13, , 1F
02/15 14:13, 1F
→
02/15 14:22, , 2F
02/15 14:22, 2F
推
02/15 14:23, , 3F
02/15 14:23, 3F
→
02/15 14:23, , 4F
02/15 14:23, 4F
→
02/15 14:23, , 5F
02/15 14:23, 5F
→
02/15 14:25, , 6F
02/15 14:25, 6F
→
02/15 14:37, , 7F
02/15 14:37, 7F
推
02/15 14:42, , 8F
02/15 14:42, 8F
→
02/15 14:42, , 9F
02/15 14:42, 9F
→
02/15 16:45, , 10F
02/15 16:45, 10F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 4 篇):