Re: [中學] 函數相關
※ 引述《ilovecurl (ilovecurl)》之銘言:
: Suppose that a,b and c are non-zero real numbers.
: Define h(x)=(ax+b)/(bx+c) for x≠-c/b.
: Determine all triples (a,b,c) for which h(h(x))=x
: for every real number x with x≠-c/b and h(x)≠-c/b
: 這題是學生問的問題,不過沒有解答,本身思路是以反函數的考量下去解的
: 但自己算的不算很有把握,所以上來求教
: 是否有大大能夠提供比較有把握的解答可供參考,謝謝!
不算有把握,就是試試看XD
設y=h(x)=(ax+b)/(bx+c)
(ay+b)/(by+c) = x => y = (b-cx)/(bx-a)
(ax+b)/(bx+c) = (b-cx)/(bx-a) => y = (a+c)x/(a+c) 〔加比〕= x
〔若a+c≠0〕
(ax+b)/(bx+c) = x => bx^2 +(c-a)x -b = 0
xεR => (c-a)^2 + 4b^2 ≧0
=> 咦?好像是任意實數?
(x≠-c/b and h(x)≠-c/b, a,b and c are non-zero)
其他請高手補充:)
--
http://attachment.van698.com/forum/201511/30/225019fywnza6atswsh36t.gif





迷途中唯一的導航 是對自己誠實
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 123.240.91.95
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1449843302.A.0FD.html
※ 編輯: Tiderus (123.240.91.95), 12/11/2015 22:39:21
推
12/12 00:55, , 1F
12/12 00:55, 1F
→
12/12 12:14, , 2F
12/12 12:14, 2F
→
12/12 12:16, , 3F
12/12 12:16, 3F
→
12/12 12:20, , 4F
12/12 12:20, 4F
推
12/12 12:32, , 5F
12/12 12:32, 5F
→
12/12 12:32, , 6F
12/12 12:32, 6F
→
12/12 16:28, , 7F
12/12 16:28, 7F
→
12/12 21:49, , 8F
12/12 21:49, 8F
推
12/12 22:38, , 9F
12/12 22:38, 9F
→
12/12 22:39, , 10F
12/12 22:39, 10F
→
12/12 22:40, , 11F
12/12 22:40, 11F
→
12/13 02:55, , 12F
12/13 02:55, 12F
→
12/13 10:29, , 13F
12/13 10:29, 13F
推
12/13 17:06, , 14F
12/13 17:06, 14F
→
12/13 17:06, , 15F
12/13 17:06, 15F
→
12/13 17:07, , 16F
12/13 17:07, 16F
→
12/13 23:01, , 17F
12/13 23:01, 17F
討論串 (同標題文章)