
Re: [中學] 高中數學

: : 第1題不用回答
Cos^2(a)+Cos^2(b)+Cos^2(c)=1
cos^2(a)/(sin^2(a)+cos^2(a))+cos^2(b)/(sin^2(b)+cos^2(b))+
cos^2(c)/(sin^2(c)+cos^2(c))=1
1/(tan^2(a)+1)+1/(tan^2(b)+1)+1/(tan^2(c)+1)=1
>=3 / 3 √[(tan^2(a)+1)(tan^2(b)+1)(tan^2(c)+1)]
所以:
(tan^2(a)+1)(tan^2(b)+1)(tan^2(c)+1)>=27
所以:
(tan^2(a)+1)(tan^2(b)+1)(tan^2(c)+1)>=2tan(a)*2tan(b)*2tan(c)>=27
所以:
tana*tanb*tanc最小值为27/8
這是大陸網友的解法
但(tan^2(a)+1) 為什麼=2tan(a) ???
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 210.61.141.61
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1446463897.A.A2F.html
→
11/02 19:36, , 1F
11/02 19:36, 1F
→
11/02 19:37, , 2F
11/02 19:37, 2F
→
11/02 19:37, , 3F
11/02 19:37, 3F
→
11/02 19:40, , 4F
11/02 19:40, 4F
推
11/02 21:26, , 5F
11/02 21:26, 5F
討論串 (同標題文章)