Re: [中學] 高中數學問題

看板Math作者 (-6.2598534e+18f)時間10年前 (2015/08/12 03:36), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串9/9 (看更多)
※ 引述《poiu716 (宅男6號)》之銘言: : 已知無窮等比級數的和為16,且前3項的和為18,求此無窮等比級數偶數項的和。 : 小弟資愚鈍,想好久都想不出來求高手解答 : 感謝 原無窮等比級數乘以公比三次方可得到去掉前三項的無窮等比級數 (原來是 a + ar + ar^2 + ar^3 + ar^4 + ... 乘以 r^3 變成 ar^3 + ar^4 + ar^5 + ar^6 + ar^7 + ...) 所以 16 * r^3 = 16 - 18 = -2, 得 r = -1/2 再令奇數項和 P, 偶數項和 Q P = a + ar^2 + ar^4 + ... Q = ar + ar^3 + ar^5 + ... 易知 Q = P * r, 又 P+Q = 16, 所以 P = 16/(1+r) = 32, Q = 16 - 32 = -16 -- 'You've sort of made up for it tonight,' said Harry. 'Getting the sword. Finishing the Horcrux. Saving my life.' 'That makes me sound a lot cooler then I was,' Ron mumbled. 'Stuff like that always sounds cooler then it really was,' said Harry. 'I've been trying to tell you that for years.' -- Harry Potter and the Deathly Hollows, P.308 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 123.195.39.85 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1439321797.A.3F4.html
文章代碼(AID): #1Loax5Fq (Math)
討論串 (同標題文章)
文章代碼(AID): #1Loax5Fq (Math)