[微積] 證明
1
設f:[0,1]⊆R->R為連續函數且滿足∫f(x)dx = 1/2
0
,試証存在一點p∈(0,1),使得f(p) = p
我的想法是
積分就是指函數圖形跟x軸之間的區域面積
證明若f(x)跟x=y沒有交點的話
f(x)跟x軸之間的區域面積會不等於1/2
http://ppt.cc/tufK
(圖畫的有點醜,請包涵)
我把它分兩個case
case.I.f(x)從A_1出發(紅色部分),若不能跟x=y有交點,
f(x)最後一定要停在A_2,且面積都會大於1/2(灰色部分)
case.II.f(x)從B_1出發(藍色部分),若不能跟x=y有交點,
f(x)最後一定要停在B_2,且面積都會小於1/2(灰色部分)
請問這樣算是證明嗎?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.253.28.208
→
11/15 18:01, , 1F
11/15 18:01, 1F
推
11/15 18:21, , 2F
11/15 18:21, 2F
→
11/15 19:01, , 3F
11/15 19:01, 3F
→
11/15 19:02, , 4F
11/15 19:02, 4F
→
11/15 19:02, , 5F
11/15 19:02, 5F
推
11/15 22:45, , 6F
11/15 22:45, 6F
→
11/15 22:47, , 7F
11/15 22:47, 7F
→
11/15 22:48, , 8F
11/15 22:48, 8F
→
11/15 22:49, , 9F
11/15 22:49, 9F
推
11/15 22:58, , 10F
11/15 22:58, 10F
→
11/15 22:59, , 11F
11/15 22:59, 11F
→
11/15 22:59, , 12F
11/15 22:59, 12F
推
11/15 23:03, , 13F
11/15 23:03, 13F
→
11/15 23:03, , 14F
11/15 23:03, 14F
→
11/15 23:03, , 15F
11/15 23:03, 15F
推
11/16 00:47, , 16F
11/16 00:47, 16F
推
11/16 00:49, , 17F
11/16 00:49, 17F
→
11/16 09:30, , 18F
11/16 09:30, 18F
推
11/16 11:22, , 19F
11/16 11:22, 19F
→
11/16 11:22, , 20F
11/16 11:22, 20F
→
11/16 11:23, , 21F
11/16 11:23, 21F
→
11/16 11:23, , 22F
11/16 11:23, 22F
→
11/16 11:27, , 23F
11/16 11:27, 23F
→
11/16 12:30, , 24F
11/16 12:30, 24F
→
01/02 15:36,
7年前
, 25F
01/02 15:36, 25F
→
07/07 11:38,
6年前
, 26F
07/07 11:38, 26F
討論串 (同標題文章)