[微積] 為何sin(1/x)是integrable?

看板Math作者 (Qmmmmmmmmm)時間13年前 (2012/12/04 19:01), 編輯推噓1(108)
留言9則, 3人參與, 最新討論串1/2 (看更多)
因為用手機發文,所以排版不太好,還請各位多多包涵... 最近讀到 lebesgue integrability and Riemann integrable 有個範例是: The function f:(0,1) -> R defined by f(x) = sin(1/x) Is bounded and continuous, and therefore integrable, On (0.1). But it is not piecewise continuous because f(0+) does not exist. 我覺得在x->0+的跳動很大,不知會是靠近1還是-1,所以總覺得沒辦法積分,不知道這跟下列這段有沒有關,因為我看不太懂 the simple criterion for integrability given by Lebesgue: A subset of R is said to have measure zero if and only if it can be enclosed in a finite or infinite sequence of open intervals whose combined total length - the sum of a finite or infinite series whose terms are the lengths of the individual intervals - is arbitrarily small, that is, smaller than any press signed positive number. Then Legesgue showed that f is Riemann integrable on (a,b) if and only if the set of points where f is discontinuous has measure zero. 麻煩各位了~謝謝~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 49.215.39.234

12/04 19:12, , 1F
一維的黎曼積分是定義在閉區間,勒貝格積分可以定義
12/04 19:12, 1F

12/04 19:13, , 2F
在任何可測集與可測函數
12/04 19:13, 2F

12/04 19:13, , 3F
你這個sin(1/x)自己在0那點定義一個值 則不連續點只
12/04 19:13, 3F

12/04 19:14, , 4F
有{0},測度0, 且sin(1/x)在[0,1]有界 所以黎曼可積
12/04 19:14, 4F

12/05 09:40, , 5F
引用 Lebesgue 的定理當然是最直接. 不過, 由積分的
12/05 09:40, 5F

12/05 09:40, , 6F
定義加上 sin(1/x) 在任何不含 0 的閉區間 [a,b],
12/05 09:40, 6F

12/05 09:41, , 7F
0<a<b, 連續, 也是很容易的, 而且也能說明為何在靠近
12/05 09:41, 7F

12/05 09:42, , 8F
0 時 sin(1/x) 的無限振盪不影響其可積性.
12/05 09:42, 8F

12/22 13:38, , 9F
謝謝樓上各位的回答....
12/22 13:38, 9F
文章代碼(AID): #1GlTVzWO (Math)
文章代碼(AID): #1GlTVzWO (Math)