Re: [微積] 為何sin(1/x)是integrable?
(之前的筆記剛好有這題:)
試證 sin(1/x) 在 [0,1] 可積。 (這個函數有趣的就是在0點附近無窮震盪)
這個積分若存在,一定介於 [-1,1]。唯一需要擔心的是無窮震蕩會不會讓積分不存在。
(方法一) 利用 Lebesgue's criterion:
若函數在 compact set S 上面處處有界有定義,而且不連續點集合測度為0
則函數在 S 上可積。
(方法二) 變數代換 y = 1/x, 可以證明積分收斂 (但是好像沒有 close form)。
(方法三) 幾何想法:這個積分可以想像成正向跟負向的面積和。
當靠近0的時候,面積都趨近於零 --> 因可從數列證明這個面積和收斂:
交互級數收斂條件:
若遞減交替級數(每項都是一正一負),其絕對值趨近於零,則級數收斂。
※ 引述《Qmmmmnn (Qmmmmmmmmm)》之銘言:
: 因為用手機發文,所以排版不太好,還請各位多多包涵...
: 最近讀到
: lebesgue integrability and Riemann integrable
: 有個範例是:
: The function f:(0,1) -> R defined by
: f(x) = sin(1/x)
: Is bounded and continuous, and therefore integrable,
: On (0.1). But it is not piecewise
: continuous because f(0+) does not
: exist.
: 我覺得在x->0+的跳動很大,不知會是靠近1還是-1,所以總覺得沒辦法積分,不知道這跟下列這段有沒有關,因為我看不太懂
: the simple criterion for integrability given by Lebesgue:
: A subset of R is said to have measure zero if and only if it can be enclosed in a finite or infinite sequence of open intervals whose combined total length - the sum of a finite or infinite series whose terms are the lengths of the individual intervals - is arbitrarily small, that is, smaller than any press signed positive number. Then Legesgue showed that f is Riemann integrable on (a,b) if and only if the set of points where f is discontinuous has measure zero.
: 麻煩各位了~謝謝~
--
才華不會令人幸福,而自私卻能解除人的痛苦。
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 216.165.95.73
→
12/05 03:10, , 1F
12/05 03:10, 1F
→
12/05 03:10, , 2F
12/05 03:10, 2F
→
12/05 03:11, , 3F
12/05 03:11, 3F
→
12/05 03:12, , 4F
12/05 03:12, 4F
→
12/05 03:14, , 5F
12/05 03:14, 5F
→
12/05 03:14, , 6F
12/05 03:14, 6F
→
12/05 04:16, , 7F
12/05 04:16, 7F
→
12/05 06:38, , 8F
12/05 06:38, 8F
→
12/05 08:19, , 9F
12/05 08:19, 9F
→
12/05 08:20, , 10F
12/05 08:20, 10F
→
12/05 08:20, , 11F
12/05 08:20, 11F
→
08/13 17:18, , 12F
08/13 17:18, 12F
→
09/17 15:12, , 13F
09/17 15:12, 13F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):