Re: [工數]一題卡很久的高階ODE...

看板Math作者 (scrya)時間13年前 (2012/04/25 01:17), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串4/4 (看更多)
忍不住就想提供另一做法(因為想很久也解很久)XD a a y'' - ------ y = 0 <=> xy'' - ----- y = 0 2 x x Let u = y/x => y' = xu' + u , y'' = xu''+ 2u' => x(xu'' + 2u') - au = 0 2 '' => x u + 2xu' - au = 0 is a Cauchy-Euler Equation Let v = ln x. Then, n n 2 2 2 n d n d xD u = D u and x D u = D u - D u, where D = ---- and D = ---- x v x v v x n v n dx dv 2 => D u + D u - au = 0 v v -1 ±√(1+4a) The characteristic roots are ------------------ 2 -1 + √(1+4a) -1 -√(1+4a) Let r1 = --------------, r2 = ------------- 2 2 r1 r2 => u = c1 x + c2 x r1+1 r2+1 => y = xu = c1 x + c2 x By x = kR, y = 0 and x = R, y = w, r1+1 r2+1 [ (kR) (kR) ] [ c1 ] [ 0 ] [ ] [ ] = [ ] [ r1+1 r2+1 ] [ ] [ ] [ R R ] [ c2 ] [ w ] r1+1 r2+1 r1+r2+2 Det = (k - k ) R r1 + r2 + 2 = -1 + 2 = 1 r2+1 r2+1 [ c1 ] 1 [ R -(kR) ] [ 0 ] [ ] = ----------------- [ ] [ ] [ ] r1+1 r2+1 [ r1+1 r1+1 ] [ ] [ c2 ] R(k - k ) [ - R (kR) ] [ w ] r2+1 r2 - (kR) R => c1 = ----------------- w = --------------- w r1+1 r2+1 r1-r2 R(k - k ) (1 - k ) r1+1 r1 (kR) R c2 = ------------------ w = --------------- w r1+1 r2+1 r2-r1 R(k - k ) (1 - k ) r1-r2 = √(1+4a) 1 + √(1+4a) 1 - √(1+4a) r1+1 = ------------------, r2+1 = --------------- 2 2 So, -[1+√(1+4a)]/2 [-1+√(1+4a)]/2 R [1+√(1+4a)]/2 R [1-√(1+4a)] y = w{------------------- x + -------------------- x } √(1+4a) -√(1+4a) 1 - k 1 - k -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.168.4

04/25 01:20, , 1F
原來本來就是Cauchy-Euler Equation....(無言)
04/25 01:20, 1F
文章代碼(AID): #1Fbk0vUX (Math)
文章代碼(AID): #1Fbk0vUX (Math)