Re: [工數]一題卡很久的高階ODE...

看板Math作者 (eji)時間13年前 (2012/04/25 00:08), 編輯推噓0(003)
留言3則, 3人參與, 最新討論串2/4 (看更多)
※ 引述《storange (我是誰?)》之銘言: : y''- ay/x^2 = 0 : 其中a是常數項 : 邊界條件分別是 x=kR y=0 : x=R y=w : 我試過令 y = exp(mx) 去化簡 : 可是分母的平方項讓我整個卡住了orz : 希望有神人能幫我解出答案~~謝謝!!! 令t=x^(1/2) dt 1 1 --- = --- x^(-1/2) = ---- dx 2 2t dy dy dt 1 dy --- = --- --- = ---- --- dx dt dx 2t dt d^2y d 1 dy dt 1 d^2y 1 dy 1 ---- = --- ( ---- --- ) --- = (---- ---- - ---- --- ) ---- dx^2 dt 2t dt dx 2t dt^2 2t^2 dt 2t 1 d^2y 1 dy = ----- ---- - ----- --- 4t^2 dt^2 4t^3 dt 代回原方程式得 1 d^2y 1 dy a ----- ---- - ----- --- - --- y = 0 同乘4t^4 4t^2 dt^2 4t^3 dt t^4 d^2y dy t^2 ---- - t --- - 4ay = 0 為Cauchy–Euler equation dt^2 dt 令 y = t^m 代入 m(m-1) - m - 4a = 0 => m^2 - 2m -4a = 0, m = 1 + √(1+4a), 1-√(1+4a) y = C1 t^[1 + √(1+4a)] + C2 t^[1 - √(1+4a)] = C1 x^[(1 + √(1+4a))/2] + C2 x^[(1 - √(1+4a))/2] y(kR) = 0, y(R) = w (kR)^[(1 + √(1+4a))/2] (kR)^[(1 - √(1+4a))/2] C1 0 => [ ] [ ] = [ ] R^[(1 + √(1+4a))/2] R^[(1 - √(1+4a))/2] C2 w => A X = b det(A) = k^[(1 + √(1+4a))/2]*R - k^[(1 - √(1+4a))/2]*R X = inv(A) * b, C1 = -(kR)^[(1 - √(1+4a))/2]*w / det(A) C2 = (kR)^[(1 + √(1+4a))/2]*w / det(A) 真不是普通的醜... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.169.223.241

04/25 00:09, , 1F
這啥鬼=___=~
04/25 00:09, 1F

04/25 00:15, , 2F
我覺得這可能是某力學或電磁學的習題吧,答案才那麼噁
04/25 00:15, 2F

04/25 00:31, , 3F
原本就是Cauchy-Euler了我整個在搞笑...
04/25 00:31, 3F
文章代碼(AID): #1Fbj0BzP (Math)
文章代碼(AID): #1Fbj0BzP (Math)