[微積] 一題分部積分

看板Math作者 (小囧)時間13年前 (2012/03/23 22:33), 編輯推噓1(1012)
留言13則, 4人參與, 最新討論串4/4 (看更多)
求∫x*arccosx dx 這題我已經用分部積分算出 x^2/2*arccosx+1/2∫x^2/√(1-x^2) dx 後面那一串積分我不知道要怎麼算下去... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.62.15.30

03/23 22:36, , 1F
可以用三角代換變成∫sin^2(t)dt
03/23 22:36, 1F

03/23 22:37, , 2F
或是分成 -x * -x/√(1-x^2) 分部積分 (差不多)
03/23 22:37, 2F

03/23 22:39, , 3F
令x=siny ; y=arcsinx
03/23 22:39, 3F

03/23 22:40, , 4F
∫sin^2(y)dt =y/2 -sin2y /4 +C
03/23 22:40, 4F

03/23 22:41, , 5F
∫sin^2(y)dy =y/2 -sin2y /4 +C =y/2-sinycosy/2+C
03/23 22:41, 5F

03/23 22:43, , 6F
=arcsinx /2 -{x*√(1-x^2)}/2}+C ,cosy=√(1-x^2)
03/23 22:43, 6F

03/23 23:00, , 7F
要怎麼用三角代換變成那樣?
03/23 23:00, 7F

03/23 23:06, , 8F
完整算式三樓板友寫出來了
03/23 23:06, 8F

03/23 23:06, , 9F
y=arcsin(x), so dy = dx/√(1-x^2)
03/23 23:06, 9F

03/23 23:07, , 10F
∫x^2 dx/√(1-x^2) = ∫sin^2(y) dy
03/23 23:07, 10F

03/23 23:53, , 11F
我會了 謝謝
03/23 23:53, 11F

08/13 16:44, , 12F
∫sin^2(y)dy https://muxiv.com
08/13 16:44, 12F

09/17 14:41, , 13F
令x=siny ; y https://daxiv.com
09/17 14:41, 13F
文章代碼(AID): #1FR8dNf2 (Math)
文章代碼(AID): #1FR8dNf2 (Math)