Re: [線代] 證明題

看板Math作者 (Paul)時間14年前 (2011/07/14 19:12), 編輯推噓3(309)
留言12則, 3人參與, 最新討論串2/4 (看更多)
※ 引述《wakke (合理化勒索)》之銘言: : Let A be an n*n matrix over R such that A^5=I .Here, as usual, : I denotes the identity matrix. : Show that if the trace tr(A)=0 , then Av=v holds, : for some non-zero vector v Factorize x^5-1 in R[x] x^5-1=(x-1)(x^4+x^3+x^2+x+1) however, x^4+x^3+x^2+x+1 has NO real roots hence, x^4+x^3+x^2+x+1=(x^2+ax+b)(x^2+cx+d) where a=-e^{2πi/5}-e^{-2πi/5}=-2cos(2π/5) c=-e^{4πi/5}-e^{-4πi/5}=-2cos(4π/5)=2cos(π/5) and x^5-1=(x-1)(x^2+ax+b)(x^2+cx+d) Denote the characteristic polynomial of A as f(x) then f(x) should be (x-1)^k (x^2+ax+b)^p (x^2+cx+d)^q and k,p,q≧0, k+2p+2q=n and k,p,q are INTEGERS First, assume p≧q, p=q+r f(x)=(x-1)^k (x^4+x^3+x^2+x+1)^q (x^2+ax+b)^r =x^n + (-k+q+ra) x^{n-1} +... Because, tr(A)=0, -k+q+ra=0, and a is IRRATIONAL hence, r=0 k=q and k+4q=n then k≠0 Similarly, if q≧p we also have k≠0 Done ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.169.48 ※ 編輯: JohnMash 來自: 112.104.169.48 (07/14 21:46)

07/15 00:30, , 1F
推~想了一下才懂
07/15 00:30, 1F

07/15 00:41, , 2F
等等 所以你這樣等於也證明了n必須是五的倍數?
07/15 00:41, 2F

07/15 00:44, , 3F
確實會有 5|n 這個結論沒錯
07/15 00:44, 3F

07/17 19:40, , 4F
x^4+x^3+x^2+x+1 is irred. in |R[x] ( Eisenstein
07/17 19:40, 4F
x^4+x^3+x^2+x+1 is irreducible in Q[x] but reducible in R[x] x^5-1=(x-1)(x^2+ax+b)(x^2+cx+d) In mathematics, Eisenstein's criterion gives an easily checked sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers. http://en.wikipedia.org/wiki/Eisenstein's_criterion

07/17 19:40, , 5F
criterion ), so the minimal poly. of A must be
07/17 19:40, 5F

07/17 19:41, , 6F
(i) x-1; (ii) x^4+x^3+x^2+x+1 (iii) x^5-1.
07/17 19:41, 6F

07/17 19:42, , 7F
The char. poly. is : (i) (x-1)^n;
07/17 19:42, 7F

07/17 19:43, , 8F
(ii) (x^4+x^3+x^2+x+1)^(n/4)
07/17 19:43, 8F

07/17 19:44, , 9F
(iii) (x^4+x^3+x^2+x+1)^a (x-1)^b
07/17 19:44, 9F

07/17 19:44, , 10F
a, b are positive integers with 4a+b = n
07/17 19:44, 10F

07/17 19:44, , 11F
Since trA = 0, (iii) with a=b is the only
07/17 19:44, 11F

07/17 19:45, , 12F
possibility. Therefore, 5|n and 1 is an eigenvle
07/17 19:45, 12F
※ 編輯: JohnMash 來自: 112.104.98.253 (07/17 23:08)
文章代碼(AID): #1E7iyKKz (Math)
討論串 (同標題文章)
以下文章回應了本文
完整討論串 (本文為第 2 之 4 篇):
線代
0
2
線代
1
3
文章代碼(AID): #1E7iyKKz (Math)