Re: [複變] 複變積分3題
※ 引述《vul3au3 (:))》之銘言:
※ 引述《znmkhxrw (QQ)》之銘言:
: ※ 引述《vul3au3 (:))》之銘言:
: : 標題: [複變] 複變積分3題
: : 時間: Sat Apr 23 10:41:02 2011
: : 希望有高手可以幫忙:非常感謝!
: : Problem # 1
: : If C is simple closed curve enclosing a region of area A, prove that
: : _
: : A = (1/2i)∮z dz
: : C
: : Use this to evaluate the integral when C is the circle │z-2│= 3.
: 應該自己會導 if f = u+iv , u,v€C1 , C is simple closed curve
: pf
: then ∮ fdz = 2i∫∫ ──── dz , where p is partial derivative
: C A p(zbar)
: take f=zbar , done
: and when C is the circle │z-2│= 3
: A = 9pi^2 , so ~ done
第一題代入的circle C沒問題,
但是,我導Green Theorem會卡住。
證明的部分如果這樣寫可以嗎?
z=r*e^iθ
dz=r*i*(e^iθ)dθ
_
z=r*e^-iθ
1 _ 1
─∮z dz = ─∮r*(e^-iθ)*r*i*(e^iθ)dθ
2i C 2i
= pi*r^2 (證明結束,pi*r^2可以當作area A嗎?)
For C:│z-2│= 3
z=3*(e^iθ)+2
dz=3*i*(e^iθ)dθ
z=3*(e^-iθ)+2
1 _ 1
─∮z dz = ─∮[3*(e^-iθ)+2]*[3*i*(e^iθ)dθ]
2i C 2i
= 9pi (答案)
-------------------------------------------------------------
Problem # 3
evaluate
dz
∫ ─────
C z^2 + 4
along the line x + y = 1 in the direction of x increasing.
: 題目是要求通式??
: 沒給起點跟終點
: 而且在i那點會爆點
這題的解答是pi/2,但不知道怎麼下手。希望有高手可以幫忙,非常謝謝。
※ 編輯: vul3au3 來自: 209.189.246.113 (04/24 20:56)
→
04/24 21:25, , 1F
04/24 21:25, 1F
→
04/24 21:25, , 2F
04/24 21:25, 2F
→
04/24 21:25, , 3F
04/24 21:25, 3F
→
04/24 21:26, , 4F
04/24 21:26, 4F
→
04/24 21:26, , 5F
04/24 21:26, 5F
→
04/24 21:26, , 6F
04/24 21:26, 6F
→
04/24 21:40, , 7F
04/24 21:40, 7F
→
04/24 22:00, , 8F
04/24 22:00, 8F
→
04/24 22:01, , 9F
04/24 22:01, 9F
討論串 (同標題文章)