Re: [線代] 若兩個矩陣相似(similar)則秩(rank)一樣?
:※ 引述《wyob (Go Dolphins)》之銘言:
:藉這篇問一下,那A會和A^t相似嗎
:因為我想要解以下這題不知道路線對不對
:prove or disprove A(A^t)和(A^t)A有相同的非負eigenvalue
:--
:※ 發信站: 批踢踢實業坊(ptt.cc)
:◆ From: 134.208.85.174
推
01/24 23:19,
01/24 23:19
No
→
01/24 23:20,
01/24 23:20
推
01/24 23:24,
01/24 23:24
→
01/24 23:25,
01/24 23:25
→
01/24 23:26,
01/24 23:26
D is Jordan block matrix, and then?
→
01/25 00:03,
01/25 00:03
→
01/25 00:36,
01/25 00:36
Suppose a NONZERO vector x and a POSITIVE numberλsatisfying
A.A^t.x=λ x...........................................(1)
then
A^t.A.A^t.x=λ A^t.x....................................(2)
that is, if x is an eigenvector of A.A^t with eigenvalue λ.
By (1), A^t.x CANNOT be the null vector.
By(2), A^t.x is an eigenvector of A^t.A with eigenvalue λ.
Suppose a NONZERO vector x satisfying
A.A^t.x=0 (i.e. λ=0)
then det(A)=0
there is a NONZERO vector y such that A.y=0
then A^t.A.y=0
Done.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 112.104.88.209
※ 編輯: JohnMash 來自: 112.104.88.209 (01/25 13:44)
推
01/25 23:00, , 1F
01/25 23:00, 1F
For example,
A=[1 0 0]
[0 1 0]
A.A^t=[1 0]
[0 1]
A^t.A=[1 0 0]
[0 1 0]
[0 0 0]
※ 編輯: JohnMash 來自: 112.104.98.144 (01/26 00:02)
推
01/26 22:42, , 2F
01/26 22:42, 2F
→
01/26 22:42, , 3F
01/26 22:42, 3F
討論串 (同標題文章)
完整討論串 (本文為第 4 之 4 篇):