[理工] 線代

看板Grad-ProbAsk作者 (RUKAWA)時間13年前 (2012/10/20 17:32), 編輯推噓4(4011)
留言15則, 5人參與, 最新討論串36/120 (看更多)
(1)Any system of n linear equations in n unknowns has at least one solution. F:改成at most 就對了嗎? (2)For a linear system of three equations and four unknown variables,we should obtain mutiple solutions. F:有可能無解? (3)If v1,v2...and vp are vectors in a nonzero finite- dimensional vector space V,and S={v1,...vp}. If S is a linear independent set,then S is a basis for V. F:還要在加這個條件dim(S)=dim(V)? (4)If A is an orthogonal matrix,then A is symmetric. F:要real才成立? (5)Let A be an n by n matrix with characteristic polynomial f(t). Let g(t) be a polynomiql for which 0<deg(g(t))<deg(f(t)). Then, g(A)=/=0. F:這題在考什麼? (6)Consider a n*nreal-valued matrix A. Wich of the following statements are equivalent to "A is nonsingular" (a)The system of n linear equations in n unknowns Ax=e1 has a unique solution,where e1=(1,0,...,0)^T. (b)A^2+3A+I is nonsingular. (c)A^2+4A Ans:a (c)我用det(A^2+4A)=det(A(A+4I)=det(A)det(A+4I)=\=0 =>det(A)=/=0,det(A+4I)=\=0 => A is nonsingular. 這樣c不也對嗎? 還有a,b要怎判斷? (7)If S generates the vector space V,then every vector in V can be written as a linear combination of elements of S in only one way. T:是因為題目說"S generates the vector space V",才得到span(S) 是V的一組基底嗎? 問題有點多,感謝回答! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 42.64.225.213 ※ 編輯: KAINTS 來自: 42.64.225.213 (10/20 17:36)

10/20 17:50, , 1F
1.改成at most也不對因為rank沒給
10/20 17:50, 1F

10/20 17:51, , 2F
2.有可能無解
10/20 17:51, 2F

10/20 17:53, , 3F
3.同你說的
10/20 17:53, 3F

10/20 17:55, , 4F
4.體是R才對
10/20 17:55, 4F
※ 編輯: KAINTS 來自: 42.64.225.213 (10/20 18:50)

10/20 18:51, , 5F
thx
10/20 18:51, 5F
※ 編輯: KAINTS 來自: 42.64.225.213 (10/20 19:00)

10/20 20:58, , 6F
4.正交跟對稱無關= =....ex[0 0 1,1 0 0,0 1 0]
10/20 20:58, 6F

10/20 21:04, , 7F
這是矩陣所以有關喔 (A^T)A=I
10/20 21:04, 7F

10/20 21:29, , 8F
D大 正交矩陣應該有關吧 像我們做正交對角化
10/20 21:29, 8F

10/20 21:30, , 9F
若A為實對稱矩陣,則A可正交對角化,存在一P為正交矩陣,使得
10/20 21:30, 9F

10/20 21:31, , 10F
P^TAP=D,其中D為對角矩陣
10/20 21:31, 10F
剛剛沒補完 A=PDP^T A^T=(PDP^T)^T=(P^T)^TD^TP^T=PDP^T=A 所以A為對稱矩陣 所以正交跟對稱矩陣有關係吧?

10/20 21:47, , 11F
我又搞錯了 鬱卒= =
10/20 21:47, 11F
※ 編輯: KAINTS 來自: 123.193.7.20 (10/20 21:50)

10/20 21:49, , 12F
實對稱<->可正交對角化,但正交矩陣不一定對稱,我上面有反例
10/20 21:49, 12F

10/20 21:51, , 13F
喔喔
10/20 21:51, 13F

10/20 21:54, , 14F
阿 我知道我的盲點是什麼了 謝謝d大
10/20 21:54, 14F

10/20 23:25, , 15F
1給F是因為可能無解(例:x+y=2; x+y=3)
10/20 23:25, 15F
文章代碼(AID): #1GWc-zDp (Grad-ProbAsk)
討論串 (同標題文章)
以下文章回應了本文
完整討論串 (本文為第 36 之 120 篇):
理工
2
14
理工
0
7
理工
1
6
理工
2
16
理工
2
13
理工
0
1
理工
2
15
理工
1
3
理工
2
9
文章代碼(AID): #1GWc-zDp (Grad-ProbAsk)