Re: [理工] [線代]
※ 引述《lai90043 (賴伯)》之銘言:
: 1.Let u be a unit vector in R^n and A = I - 2uu^T
: -1
: determine A .
: 2.Let a1.a2...ak be the singular values of an m*n
: T
: matrix A .Find det(In + A A).
: =====================================================
: 1.本來想直接將A = I - 2uu^T 取invers 但是馬上卡住解不下去
: 2.不知該如何下手 singular value有什麼特別的意思嗎?
uu^T 其實是投影矩陣 題目也很好心幫你normal了
如果直接看不出來怎麼反矩陣 那我們來把他分解好了
設: V=[v1,v2,...vn-1], and [u V] is an orthonormal matrix
=> [u V] 可以span R n*n
uu^T = u*1*u^T + V*0*V^T 把他們寫在一起
= [u V]*[1 0]*[u^T]
[0 0] [V^T]
^ n-1階0矩陣 增廣特徵分解
所以原題就很簡單了 ^_^
==
如果知道uu^T是投影
let X=Xu+Xv, Xu // u, Xv orthogonal to u
AX = X -2 uu^T X = Xu+Xv-2Xu = -Xu + Xv
也就是讓u方向反向(Xu => -Xu) 與u正交的方向都不變 (Xv = Xv)
反矩陣就是把u方向再反射回來
所以反矩陣會等於自己
即使uu^T的scalar有變
也是很顯然地能想回來吧 ^_^
--
╔╦══╦═╤══╦══╦═││═││╦═══╦══╦═╦═╤═╤═╗
║╙ ○ ╜ ─┐ │ ╙─││ ││║ ─┐ ║ │ ╙─itsforte╢
╠─ ─┐ ┼┼ ┌──┬ ││ ││╙ ┼┼ ╙┌┬┬┐ ║
║ ││ ││ ││┬┐ │└─│└ ││ ││││ ║
║╓ ││ ╓││ └┴││ └──┼─ ╥││ ╓││┴┘╓─一詞扶梯╢
╚╩ └─ ╩└─ ═└─┴┘═╧═ │ ═╩└─ ╩└┴──╩══╧═╧╝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.140.193.219
推
09/08 20:21, , 1F
09/08 20:21, 1F
→
09/08 22:23, , 2F
09/08 22:23, 2F
推
09/08 22:27, , 3F
09/08 22:27, 3F
→
09/08 22:28, , 4F
09/08 22:28, 4F
→
09/08 22:29, , 5F
09/08 22:29, 5F
→
09/08 22:32, , 6F
09/08 22:32, 6F
→
09/08 22:33, , 7F
09/08 22:33, 7F
推
09/08 22:38, , 8F
09/08 22:38, 8F
推
09/08 23:26, , 9F
09/08 23:26, 9F
→
09/09 00:20, , 10F
09/09 00:20, 10F
→
09/09 00:36, , 11F
09/09 00:36, 11F
→
09/09 07:46, , 12F
09/09 07:46, 12F
→
09/09 07:46, , 13F
09/09 07:46, 13F
→
09/11 14:30, , 14F
09/11 14:30, 14F
討論串 (同標題文章)
本文引述了以下文章的的內容:
理工
1
4
完整討論串 (本文為第 12 之 15 篇):
理工
5
13
理工
1
5
理工
4
14
理工
1
1
理工
1
4
理工
3
8
理工
1
4
理工
2
13