[理工] [線代]-線性映射

看板Grad-ProbAsk作者 (快來明星3 缺1 )時間16年前 (2009/12/09 01:33), 編輯推噓0(005)
留言5則, 3人參與, 最新討論串4/12 (看更多)
1.let T be a linear operator space V of dinension 3 ,and let x be a vector in V . If p denotes the smallest positive integer such that 3 2 (T-2I) (x)=0 and (T-2I) (x) (T-2I)(x) ,x ar independent vectors,then What is the matrix presentation of T by the ordered set 2 {(T-2I) (x), (T-2I)(x), x}? ans: 2 1 0 Ta=[0 2 1 ] 0 0 2 這題我連題目再說什麼都不懂= = 拜託解釋的詳細點 那個p 到底代表什麼? 2.Let A be a real symmetric positive definite n*n matrix prove that the leading principle submatrices A1 A2.....An of A are all positive definite(A leading principle submatrix Ar is formed by deleting the last n-r rows and columns of A) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.37.139.185

12/09 08:05, , 1F
1.就是喬丹正則式
12/09 08:05, 1F

12/09 11:52, , 2F
不太懂@@ 懇請樓上交交我怎麼解
12/09 11:52, 2F

12/09 22:13, , 3F
拜託各位高手教一下我T.T
12/09 22:13, 3F

12/11 02:12, , 4F
只是告知P=3,在做映射時會用到(T-2I)^3=0,所以才強調
12/11 02:12, 4F

12/11 02:17, , 5F
基底以經給你了,在所給定的基底上找代表矩陣
12/11 02:17, 5F
文章代碼(AID): #1B7etUre (Grad-ProbAsk)
討論串 (同標題文章)
文章代碼(AID): #1B7etUre (Grad-ProbAsk)