討論串[微分]
共 89 篇文章
內容預覽:
x>1 ==> (√x-1/√x)^2 > 0. ==> x + 1/x - 2 >0. Let f(x) = x + 1/x, x≧1. ==> f(1) = 2. x>1 ==> (f(x)-f(1))/(x-1) = f'(c) = 1-1/c^2 for some c in (1,x). 故
(還有226個字)
內容預覽:
有錯請指正. 首先我們先用定義猜猜看f'(0) = ?. 然後再用ε-δ給一個證明. by(i) f(0)=0. f'(0) = lim [f(x)-f(o)]/(x-0) = lim f(x)/x =< lim x^2/x = lim x = 0. x→0. 所以我們猜f'(0) = 0. cla
(還有234個字)