Re: [考古] 一致連續的問題
※ 引述《s920911 (旋轉布丁)》之銘言:
: f(x)=1+x+x^2+x^3+... 下列區間和者不為一致連續?
: (A) 0≦x≦0.5
: (B) -0.9999<x<0.9999
: (C) 0<x<0.9999
: (D) 0<x<0.5
: (E) 0<x<1
: 答案 是E
: 我想問問 B的答案不行嗎?
推
03/19 00:48,
03/19 00:48
→
03/19 00:48,
03/19 00:48
→
03/19 00:49,
03/19 00:49
→
03/19 01:12,
03/19 01:12
→
03/19 01:14,
03/19 01:14
→
03/19 01:14,
03/19 01:14
→
03/19 01:15,
03/19 01:15
→
03/19 23:27,
03/19 23:27
→
03/19 23:28,
03/19 23:28
→
03/19 23:29,
03/19 23:29
這裡的一致連續指的應該是 uniformly continuous
與一般的連續差別在於 δ 的選取只跟 ε 有關而跟點的選取無關
f(x) 只定義在 (-1,1) 且
1
f(x) = --------- .
1 - x
可以考慮以下這種點 x_n := 1-1/n , y_n := 1-1/(2n)
1
| f(x_n) - f(y_n) | = ------------------ |x_n-y_n|
|(1-x_n)(1-y_n)|
= n -> ∞ as n -> ∞
因此 f 不可能為 uniformly continuous
事實上 f 在每一個不包含 1 的 閉區間 都是一致連續的
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 122.127.117.147
※ 編輯: Eliphalet 來自: 122.127.117.147 (03/20 09:30)
→
03/20 09:29, , 1F
03/20 09:29, 1F
→
03/20 09:30, , 2F
03/20 09:30, 2F
→
03/20 09:30, , 3F
03/20 09:30, 3F
→
03/20 09:31, , 4F
03/20 09:31, 4F
→
03/20 09:38, , 5F
03/20 09:38, 5F
→
03/20 09:39, , 6F
03/20 09:39, 6F
推
03/21 01:33, , 7F
03/21 01:33, 7F
→
03/21 01:34, , 8F
03/21 01:34, 8F
→
03/21 07:56, , 9F
03/21 07:56, 9F
→
03/21 23:31, , 10F
03/21 23:31, 10F
→
03/21 23:31, , 11F
03/21 23:31, 11F
→
03/22 03:42, , 12F
03/22 03:42, 12F
→
03/24 10:07, , 13F
03/24 10:07, 13F
→
03/24 10:08, , 14F
03/24 10:08, 14F
→
03/24 10:08, , 15F
03/24 10:08, 15F
→
03/24 10:09, , 16F
03/24 10:09, 16F
→
03/24 10:10, , 17F
03/24 10:10, 17F
→
03/24 10:12, , 18F
03/24 10:12, 18F
→
03/24 10:12, , 19F
03/24 10:12, 19F
→
03/24 10:13, , 20F
03/24 10:13, 20F
討論串 (同標題文章)