看板
[ Math ]
討論串[微積] e^(a/x)積分
共 5 篇文章
內容預覽:
看大家這麼踴躍,我也來分享一下我的方法好了@@. a a/x. solve ∫---e dx. x. Let a/x = y dy = -a/x^2 dx. => dx = -a/y^2 dy. 帶入原式. y 1 1 y. -a∫y*e ---- dy = -a∫---e dy. y^2 y. y
(還有15個字)
內容預覽:
題目根本不同類型呀............囧. 令u=y/x, y=ux, dy=xdu+udx. xdu+udx. [1+exp(u)-uexp(u)]+exp(u) ──── =0. dx. [1+exp(u)-uexp(u)]dx + uexp(u)dx+xexp(u)du=0. [1+exp
(還有52個字)
內容預覽:
Q1:. x x a. 令u=a/x => ux=a => d(ux)=0 =>udx+xdu=0 => dx= - ── du = - ── ──du. u a u. a. =- ──du. u^2. exp(u) exp(u). ∫exp(a/x)dx = -a∫ ─── du = a─── -
(還有87個字)