Re: [微積] 微積分的問題
※ 引述《ballballking (蛋蛋王)》之銘言:
: (1) ∫y^2/(9-y^2)^(5/2)dy
: (2) lim f(x)/[x(arctanx)] =? f(x)= ∫e^(-t)/(1+t^2)dt 從0積到x^2
: x→0
: (3) 求x^(2/3)+y^(2/3)=1 的周長
(1)let y=3cos(alpha),dy=-3sin(alpha)d(alpha)
原式
=S{[9cos^2(alpha)]/[9sin^2(alpha)]^(5/2)}[-3sin(alpha)] d(alpha)
=(-1) S [3^2cos^2(alpha)]/[3^4*sin^4(alpha)] d(alpha)
=(1/3^2) S cot^2(alpha)*[-csc^2(alpha)] d(alpha)
=(1/3^3) cot^3(alpha) + c
=(1/27)[y/sqrt(9-y^2)]^3 + c
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.58.103.35
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1469240037.A.1B5.html
※ 編輯: wayne2011 (61.58.103.35), 07/23/2016 10:17:49
※ 編輯: wayne2011 (61.58.103.35), 07/23/2016 10:20:54
推
07/23 10:51, , 1F
07/23 10:51, 1F
→
07/23 11:41, , 2F
07/23 11:41, 2F
→
07/23 12:18, , 3F
07/23 12:18, 3F
推
07/23 13:45, , 4F
07/23 13:45, 4F
推
07/23 15:33, , 5F
07/23 15:33, 5F
→
07/23 15:54, , 6F
07/23 15:54, 6F
討論串 (同標題文章)