[分析] 複數冪級數z→infinity
想請問一下如何不用複變的定理去證明以下這件事情:
∞
Let f(z) = Σ a_n*z^n , for all z€Complex plane
n=0
if lim f(z) = L
z→∞
then a_0 = L and a_n = 0 for all n>=1
----------------------------------------------
用複變的話直接entire function + Liouville Thm 就結束了
可是回歸到高微,完全沒有方向QQ 湊了三角不等式也面臨又極限交換問題
謝謝幫忙!
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.226.98.38
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1460452509.A.30A.html
→
04/12 17:38, , 1F
04/12 17:38, 1F
→
04/12 17:51, , 2F
04/12 17:51, 2F
難怪我去WIKI查關鍵字後覺得 我高微怎麼沒上過XDD
→
04/12 18:02, , 3F
04/12 18:02, 3F
願聞其詳 我目前知道的3個方法分別是複變 幾何 拓樸
高微的方法是??
※ 編輯: znmkhxrw (36.226.98.38), 04/12/2016 18:04:52
→
04/12 18:03, , 4F
04/12 18:03, 4F
→
04/12 18:09, , 5F
04/12 18:09, 5F
→
04/12 18:12, , 6F
04/12 18:12, 6F
這樣看起來的話似乎不是每一項搬一搬然後經由一些epsilon-delta 就能證出來的?
我原意是希望高微學完power series的性質後就能證出了 如果還需要證回複變的定理
或是用其他領域的性質的話 那我還是用複變的方法是最好說明的 謝謝囉!
原本是以為都是收斂半徑無限大的power series 了 應該搬一搬就出來了
看來是我想太多了XDDD
※ 編輯: znmkhxrw (36.226.98.38), 04/12/2016 18:19:36
推
04/12 18:26, , 7F
04/12 18:26, 7F
→
04/12 18:27, , 8F
04/12 18:27, 8F
→
04/12 18:27, , 9F
04/12 18:27, 9F
→
04/12 18:31, , 10F
04/12 18:31, 10F
→
04/12 18:35, , 11F
04/12 18:35, 11F
→
04/12 18:35, , 12F
04/12 18:35, 12F
→
04/12 18:54, , 13F
04/12 18:54, 13F
→
04/12 18:54, , 14F
04/12 18:54, 14F
→
04/12 18:55, , 15F
04/12 18:55, 15F
→
04/12 18:55, , 16F
04/12 18:55, 16F
不太懂耶
再者 "整個函數會被從上 bound 住" 這句話直接從極限存在以及f連續就可以得到了
你論證的邏輯是這樣嗎
1.Show│f│<=M
2.取負號( 這邊我不知道是對誰取
3.max principle 就壞掉了
※ 編輯: znmkhxrw (36.226.98.38), 04/12/2016 19:02:30
推
04/12 19:08, , 17F
04/12 19:08, 17F
推
04/12 21:39, , 18F
04/12 21:39, 18F
→
04/12 21:42, , 19F
04/12 21:42, 19F
→
04/12 21:45, , 20F
04/12 21:45, 20F
→
04/12 21:47, , 21F
04/12 21:47, 21F
→
04/12 22:12, , 22F
04/12 22:12, 22F
→
04/12 22:12, , 23F
04/12 22:12, 23F
→
04/12 22:12, , 24F
04/12 22:12, 24F
→
04/12 23:07, , 25F
04/12 23:07, 25F
→
04/12 23:08, , 26F
04/12 23:08, 26F
→
04/12 23:16, , 27F
04/12 23:16, 27F
→
04/12 23:21, , 28F
04/12 23:21, 28F
→
04/12 23:23, , 29F
04/12 23:23, 29F
→
04/12 23:23, , 30F
04/12 23:23, 30F
→
04/12 23:28, , 31F
04/12 23:28, 31F
→
04/12 23:29, , 32F
04/12 23:29, 32F
→
04/12 23:30, , 33F
04/12 23:30, 33F
→
04/12 23:30, , 34F
04/12 23:30, 34F
→
04/12 23:31, , 35F
04/12 23:31, 35F
→
04/12 23:32, , 36F
04/12 23:32, 36F
→
04/12 23:32, , 37F
04/12 23:32, 37F
→
04/12 23:33, , 38F
04/12 23:33, 38F
→
04/12 23:34, , 39F
04/12 23:34, 39F
→
04/12 23:53, , 40F
04/12 23:53, 40F
→
04/13 02:50, , 41F
04/13 02:50, 41F
→
04/13 09:16, , 42F
04/13 09:16, 42F
→
04/13 09:16, , 43F
04/13 09:16, 43F
→
04/13 09:19, , 44F
04/13 09:19, 44F
→
04/13 09:20, , 45F
04/13 09:20, 45F
→
04/13 09:24, , 46F
04/13 09:24, 46F
推
04/26 22:54, , 47F
04/26 22:54, 47F
→
04/26 22:55, , 48F
04/26 22:55, 48F
→
04/26 22:57, , 49F
04/26 22:57, 49F
→
04/26 22:59, , 50F
04/26 22:59, 50F
→
04/26 23:00, , 51F
04/26 23:00, 51F
→
04/26 23:00, , 52F
04/26 23:00, 52F
→
04/26 23:02, , 53F
04/26 23:02, 53F
→
04/26 23:02, , 54F
04/26 23:02, 54F
討論串 (同標題文章)
以下文章回應了本文:
完整討論串 (本文為第 1 之 2 篇):