Re: [代數] 多項式根與係數關係

看板Math作者 (TimcApple)時間10年前 (2015/11/15 22:52), 編輯推噓2(204)
留言6則, 2人參與, 最新討論串2/3 (看更多)
※ 引述《revengeiori (大笨宗)》之銘言: : 請教一下這題 : http://i.imgur.com/TCtcOw0.jpg
: p(1)我算出來是19 : 但不太確定,請問有沒有完整的算法 : 對於f(x)使用韋達定理,可以得到 : r_1 + r_2 + r_3 + ... + r_2007 = -17 : r_1 * r_2 * r_3 * ... * r_2007 = -1 : 兩根&三個以上的根 乘積和為零 : 且令a_j =r_j + 1/(r_j) ,其中 j=1,2,...,2007 : 加上P(x)若領導係數為1 : 則 P(x) = (x - a_1)*(x - a_2)*(x - a_3)*...*(x - a_2007) : = x^2007 - (a_1 + a_2 + a_3 +...+a_2007)x^2006 : + (a_1*a_2 + a_1*a_3 +...+ a_2006*a_2007)x^2005 : ...... : - a_1*a__2*a_3*a_4*...*a_2007 : (這裡開始把韋達定理的條件代進去,怕有地方算錯) : 故P(x)只要計算2007次項&2006次項&常數項便可,其他項係數都是零 : P(1)= 1 - (-17) - (-1 -1) = 20 : 希望大家可以討論一下 來打字好了,我也不知道有沒有錯 prod(x_i) 表示2007個x_i相乘 f(x) = x^2007 + 17x^2006 + 1 = prod(x-r_i) g(x) = x^2007 f(1/x) = x^2007 + 17x + 1 = prod(x (1/x-r_i)) = prod(-r_i) prod(x-1/r_i) = prod(x-1/r_i) f(x) g(x) = prod((x-r_i)(x-1/r_i)) = prod((x^2+1)-x(r_i+1/r_i)) 令x^2+1=x, 則x=-w是一解 (w^3=1) f(-w) g(-w) = (-w)^2007 prod(1-(r_i+1/r_i)) = - p(1) = (-1+17(-w)^2006+1)(-1+17(-w)+1) = 289(-w)^2007 = - 289 所以 p(1) =289 , p(1)/f(-1) = 17 -- 嗯嗯ow o -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 39.12.161.66 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1447599142.A.487.html

11/15 23:06, , 1F
代i的話 會得到常數項p(0)=257
11/15 23:06, 1F

11/15 23:06, , 2F
x^2007 + 17x + 1 = Π[x- (1/ri)] ?
11/15 23:06, 2F

11/15 23:09, , 3F
Π->此處位連乘符號
11/15 23:09, 3F

11/15 23:18, , 4F
對 基本上就是想弄出prod(x-1/r_i)
11/15 23:18, 4F

11/15 23:18, , 5F
然後發現f代1/x進去就很接近了
11/15 23:18, 5F

11/15 23:36, , 6F
嗯 懂了 thx
11/15 23:36, 6F
文章代碼(AID): #1MI9mcI7 (Math)
文章代碼(AID): #1MI9mcI7 (Math)