Re: [機統] 期望值 變異數 搞不太懂

看板Math作者 (嗜欲深者天機淺)時間10年前 (2015/06/29 01:19), 10年前編輯推噓1(100)
留言1則, 1人參與, 最新討論串3/4 (看更多)
因為這公式是由二項分佈導出,所以放回才適用: 設投n次,單次機率p,隨機變數x:x從0到n p+q=1 先證 x * C(n,x) = n * C(n-1,x-1) n 則期望值E(x)= Σ x * C(n,x) * p^x * q^(n-x) 0 n = Σ x * C(n,x) * p^x * q^(n-x) 1 n = Σ n * C(n-1,x-1) * p^x * q^(n-x) 1 (設k=x-1) n =npΣ C(n-1,k) * p^k * q^[(n-1)-k] 0 =np*(p+q)^(n-1)=np*1=np Var變異數=E(x^2) - [E(x)]^2 = E(x^2) - (np)^2 E(x^2)=E[x(x-1) + x] = E[x(x-1)] + E(x) = E[x(x-1)] + np n E[x(x-1)]= Σ x(x-1) * C(n,x) * p^x * q^(n-x) 0 n = Σ x(x-1) * C(n,x) * p^x * q^(n-x) 2 ---- x * C(n,x) = n * C(n-1,x-1) (x-1) * C(n-1,x-1) = (n-1) * C(n-2,x-2) 設k=x-1,設i=k-1 ---- n = np Σ k * C(n-1,k) * p^k * q^[(n-1)-k] 1 n = n(n-1)p^2 * Σ C(n-2,i) * p^i * q^[(n-2)-i] 0 = n(n-1)p^2 * (p+q)^(n-2) = n(n-1)p^2 * 1 =n(n-1)p^2 Var(x) =E(x^2) - [E(x)]^2=E[x(x-1)] + E(x) - [E(x)]^2 =n(n-1)p^2 + np - (np)^2 =np-np^2=np(1-p)=npq -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 123.240.128.71 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1435511946.A.1F3.html ※ 編輯: Tiderus (123.240.128.71), 06/29/2015 01:31:49

06/29 17:14, , 1F
看到證明就跪下去了OTZ
06/29 17:14, 1F
文章代碼(AID): #1La2oA7p (Math)
文章代碼(AID): #1La2oA7p (Math)