[代數] 數論一題
求正整數x,y 使得 x^2 - 2y^2 = 1
解:
(x-(√2)y)(1-(√2))(x+(√2)y)(1+(√2)) = -1
=> (x+2y)^2 - 2(x+y)^2 = -1
令x'=x+2y, y'=x+y
同樣的方法 (x'+2y')^2 - 2(x'+y')^2 = 1
故 x^2 - 2y^2 = 1 => (3x+4y)^2 - 2(2x+3y)^2 = 1
先給個顯然的初始解: x=1, y=0
我們可以找到 (3,2), (17,12), (99,70), (577,408)..等無限多組解
我的問題是 是否還存在其它解?
因為這個解法只是給出一個遞迴式 唯一性不知道怎麼證明
(我想很久證不出來 也有可能不唯一)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 76.88.120.148
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1426984391.A.403.html
→
03/22 08:34, , 1F
03/22 08:34, 1F
→
03/22 08:34, , 2F
03/22 08:34, 2F
→
03/22 09:36, , 3F
03/22 09:36, 3F
→
03/22 10:39, , 4F
03/22 10:39, 4F
→
03/22 10:41, , 5F
03/22 10:41, 5F
→
03/23 11:55, , 6F
03/23 11:55, 6F
→
03/23 20:06, , 7F
03/23 20:06, 7F
→
03/23 20:06, , 8F
03/23 20:06, 8F
→
03/23 20:07, , 9F
03/23 20:07, 9F
→
03/23 23:03, , 10F
03/23 23:03, 10F
討論串 (同標題文章)