Re: [微積] 證明lim(n->oo) (1+1/n)^n 極限存在
※ 引述《kyoiku (生死間有大恐怖)》之銘言:
: 如題
: 證明 lim(n->oo) (1+1/n)^n 極限存在
: 要證遞增且有上界,記得以前看過一個初等方法,
: 不過滿巧妙的已經忘了 QQ
先證 (1+1/n)^n 遞增
考慮 1 與 n 個 (n+1)/n (共n+1個正數)
其算數平均 = (n+2)/(n+1) = 1+1/(n+1)
幾何平均 = (1+1/n)^(n/(n+1))
→ (1+1/(n+1))^(n+1) ≧ (1+1/n)^n
再證 (1+1/n)^(n+1) 遞減
考慮 1 與 n+1 個 n/(n+1) (共n+2個正數)
AM = (n+1)/(n+2)
GM = (n/(n+1))^((n+1)/(n+2))
→ ((n+1)/(n+2))^(n+2) ≧ (n/(n+1))^(n+1)
→ ((n+2)/(n+1))^(n+2) ≦ ((n+1)/n)^(n+1)
→ (1+1/(n+1))^(n+1+1) ≦ (1+1/n)^(n+1)
顯然 (1+1/n)^n < (1+1/n)^(n+1) ≦ 4 for all n
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.238.94.190
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1406314727.A.997.html
推
07/26 03:14, , 1F
07/26 03:14, 1F
→
07/26 03:15, , 2F
07/26 03:15, 2F
→
07/26 03:18, , 3F
07/26 03:18, 3F
→
07/26 03:18, , 4F
07/26 03:18, 4F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 3 篇):