Re: [微積] 證明lim(n->oo) (1+1/n)^n 極限存在

看板Math作者 (耶死放)時間11年前 (2014/07/26 01:45), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串2/3 (看更多)
小弟只會證明n是正整數時,極限存在~Orz 遞增: (1+1/n)^n =1+C(n,1)*(1/n)+C(n,2)*(1/n)^2+...+C(n,n)*(1/n)^n =1+1+[(n-1)/n]*[1/(2!)]+[(n-1)*(n-2)/(n*n)]*[1/(3!)] +...+[(n-1)*(n-2)*...*1/(n*n*...*n)]*[1/(n!)] <=1+1+[(n)/(n+1)]*[1/(2!)]+[(n)*(n-1)/((n+1)*(n+1))]*[1/(3!)] +...+[n*(n-1)*...*2/((n+1)*(n+1)*...*(n+1))]*[1/(n!)] <=1+1+[(n)/(n+1)]*[1/(2!)]+[(n)*(n-1)/((n+1)*(n+1))]*[1/(3!)] +...+[n*(n-1)*...*2/((n+1)*(n+1)*...*(n+1))]*[1/(n!)] +C(n+1,n+1)*[1/(n+1)]^(n+1) =1+C(n+1,1)*[1/(n+1)]+C(n+1,2)*[1/(n+1)]^2+C(n+1,3)*[1/(n+1)]^3 +...+C(n+1,n)*[1/(n+1)]^n +C(n+1,n+1)*[1/(n+1)]^(n+1) =[1+1/(n+1)]^(n+1) ps: (n-k)/n <= (n-k+1)/(n+1) for n,k are 正整數 有上界: (1+1/n)^n =1+C(n,1)*(1/n)+C(n,2)*(1/n)^2+...+C(n,n)*(1/n)^n <=1+1/(1!)+1/(2!)+1/(3!)+...... <=1+1+1/2+1/(2^2)+......=3 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.217.14 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1406310316.A.261.html

07/27 16:29, , 1F
實數的部分可以夾,用 [n]<=n<[n]+1
07/27 16:29, 1F
文章代碼(AID): #1JqfUi9X (Math)
文章代碼(AID): #1JqfUi9X (Math)